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ABSTRACT
Complex distributed Internet services form the basis not
only of e-commerce but increasingly of mission-critical network-
based applications. What is new is that the workload and in-
ternal architecture of three-tier enterprise applications presents
the opportunity for a new approach to keeping them running
in the face of many common recoverable failures. The core
of the approach is anomaly detection and localization based
on statistical machine learning techniques. Unlike previous
approaches, we propose anomaly detection and pattern min-
ing not only for operational statistics such as mean response
time, but also for structural behaviors of the system—what
parts of the system, in what combinations, are being exer-
cised in response to different kinds of external stimuli. In
addition, rather than building baseline models a priori, we
extract them by observing the behavior of the system over
a short period of time during normal operation. We explain
the necessary underlying assumptions and why they can be
realized by systems research, report on some early successes
using the approach, describe benefits of the approach that
make it competitive as a path toward self-managing sys-
tems, and outline some research challenges. Our hope is
that this approach will enable “new science” in the design of
self-managing systems by allowing the rapid and widespread
application of statistical learning theory techniques (SLT) to
problems of system dependability.

1. RECOVERY AS RAPID ADAPTATION
A “five nines” availability service (99.999% uptime) can

be down only five minutes a year. Putting a human in the
critical path to recovery would expend that entire budget
on a single incident, hence the increasing interest in self-
managing or so-called “autonomic” systems. Although there
is extensive literature on statistics-based change point detec-
tion [2], some kinds of partial failures, or “brown-outs” in
which only part of a service malfunctions, cannot be easily
detected by such techniques. For example, one of the au-
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thors experienced a bug such that after clicking to purchase
a flight for April, a later visit to the “flight details” page
showed the wrong flight date (in October) and no flight
itinerary details at all. If the operational statistics such
as response time for delivering this page are within nor-
mal thresholds, performance monitoring would not find this
problem. Indeed, such “glitches” accounted for up to 64% of
user-visible failures in the 40 top-performing Web sites ac-
cording to an industry group survey [4], and our own anec-
dotal experience with one large service provider reveals that
75% of their total recovery time for application-level fail-
ures is spent detecting them, and another 18% diagnosing
them [9].

We believe a promising direction is to start thinking not in
terms of normal operation vs. recovery, but in terms of con-
stant and rapid adaptation to external conditions, including
sudden workload changes, inevitable hardware and software
failures, and human operator and programmer errors. In
particular, we propose the broad application of techniques
from statistical learning theory (SLT)—automatic classifi-
cation, novelty/anomaly detection, data clustering, etc.—to
observe and track structural behaviors of the system, and to
detect potential problems such as the example above.

2. APPROACH AND ASSUMPTIONS
We assume typical request-reply based Internet services,

with separate session state [18] used to synthesize more
complex interactions from a sequence of otherwise stateless
request-reply pairs. Past approaches to statistical monitor-
ing of such services have primarily relied on a priori con-
struction of a system model for fault detection and anal-
ysis; this construction is tedious and error-prone, and will
likely remain so as our services continue to evolve in the
direction of heterogeneous systems of black boxes, with sub-
systems such as Web servers, application logic servers, and
databases being supplied by different vendors and evolving
independently. We propose instead to build and periodi-
cally update the baseline model by observing the system’s
own “normal” behavior. The approach can be summarized
as follows:

1. Ensure the system is in a state in which it is mostly
doing the right thing most of the time, according to
simple and well-understood external indicators.

2. Collect observations about the system’s behavior dur-
ing this time to build one or more baseline models



of behavior. These models may capture either time-
series behaviors of particular parameters or structural
behaviors of the system.

3. If “anomalous” behaviors relative to any of these mod-
els are observed, automatically trigger simple correc-
tive actions. If repeated simple corrective actions do
not cause the anomaly to go away, notify a human.
Since false positives are a fact of life with statistical
approaches, we also need a strategy for quantifying
and dealing with the cost of acting on false positives.

4. Periodically, go back to step 2, to update the model.

Each of steps 1–3 corresponds to an assumption, as fol-
lows.

A1. Large number of independent requests. If most
users’ interactions with the service are independent of each
other (as they usually are for Internet services), and if we
assume bugs are the exception rather than the norm, such
a workload gives us the basis to make “law of large num-
bers” arguments supporting the use of statistical techniques
to extract the model from the behavior of the system itself.
Also, a large number of users per unit time means that large
fractions of the service’s functionality are exercised in a rel-
atively short period of wall-clock time, providing hope that
the model can be created and maintained online while the
system is running.

A2. Modular architecture for observation points.

To use statistical or data-mining techniques, we need a rep-
resentation of the data observations the model will operate
on (“concepts” in the terminology of data mining) and a
way to capture those observations. A modular service de-
sign, such as the componentized design induced by Java 2
Enterprise Edition (J2EE) or CORBA, allows us to crisply
define a single user’s time-bounded request-reply interaction
with the service as a collection of discrete service elements
or subsystems that participated in that interaction. For ex-
ample, in J2EE, the unit of application modularity is the
Enterprise Java Bean (EJB); a particular codepath through
a J2EE application will “touch” some subset of EJB classes.
Note that components themselves are opaque—we do not
see intra-component method calls. This coarser grain max-
imizes the likelihood that the number of “legitimate” code
paths through the system is much smaller than the num-
ber of permutations of components, making anomaly detec-
tion appealing. Note also that it is OK if the behaviors
observed at different observation points are correlated with
each other, or completely uncorrelated to any interesting
failure; well-known feature selection algorithms can identify
the subset of features most predictive of anomalies from a
much larger collection of features, as was done, e.g., in iden-
tifying the set of failed program assertions most correlated
with failed executions and therefore likely to be indicative of
the causative bugs [16]. Lastly, collecting these observations
must not interfere materially with service performance.

A3. Simple and predictable control points. If the
model’s predictions and analyses are to be used to effect
service repair when an anomaly indicating a potential fail-
ure is detected, there must be a safe, predictable, and rela-
tively non-disruptive way to do so. Safe means that correct
application semantics are not jeopardized by actuating the
control point. Predictable means that the cost of actuat-
ing the control point must be well known. Non-disruptive

means that the result of activating a control point will be no
worse than a minor and temporary effect on performance.
These properties are particularly important when statistical
techniques are used because those techniques will inevitably
generate false positives. If we know that the only effect of
acting on a false positive is a temporary and small decrease
in performance, we can quantify the cost of “blindly” act-
ing on false positives; this enhances the appeal of automated
statistical techniques, since many techniques’ sensitivity can
be tuned to trade off false positive rates vs. false negative
(miss) rates.

We now turn to how these assumptions might be satis-
fied in a real service. Note that A1 is trivially true for the
services in question, whereas A2 and A3 lead to some inter-
esting systems research.

3. OBSERVATION AND CONTROL POINTS
Since modifying every existing application to add obser-

vation and control points is cumbersome and unlikely, we
limit our attention initially to framework-intensive applica-
tions1—those whose total code consists mostly of middle-
ware (e.g. J2EE runtime services, libraries, etc.) with a
smaller amount of application logic (though even simple ap-
plications typically contain 10K to 100K lines of such logic).
By modifying the middleware, we can provide application-
generic observation points without any extra work for appli-
cation programmers. For example, we modified the source
code of the JBoss open-source application server to collect
and report code-path observations [8].

It is more difficult to add application-generic control points
that are predictable, safe and non-disruptive. Crashing and
rebooting a machine is certainly predictable, since crash-
ing relies only on a simple external mechanism (the power
switch), but it may be unsafe or disruptive or both, unless
the application is known to be crash-only [5]. We have suc-
cessfully done this by modifying a J2EE application server
to support the “microrebooting” of individual application
components [6] and have begun combining this ability with
application-generic statistical learning based failure detec-
tion [7]. Another alternative is coercing any failure to a
machine-level crash and turning the failure into slight addi-
tional latency using a combination of overprovisioning and
fast failover, as is commonly done for stateless Web servers [3]
and more recently for specialized state storage subsystems [17,
13].

We give examples using microrebooting since we have
some early results in that area, but other methods of mi-
crorecovery are being independently explored, such as the
unloading and reloading of kernel device drivers to recover
from transient driver-related failures [21].

4. SLT AND DEPENDABILITY
Having briefly addressed some important systems-building

issues (to which we return shortly in the context of some con-
crete examples), we now discuss the core of our detection
and diagnosis strategy. Statistical learning theory (SLT)
provides a framework for the design of algorithms for classi-
fication, prediction, feature selection, clustering, sequential
decision-making, novelty detection, trend analysis, and di-
agnosis. Its techniques are already being used in bioinfor-

1By framework we refer to a componentized middleware
such as J2EE or CORBA.



matics, information retrieval, spam filtering and intrusion
detection. We propose a software architecture for integrat-
ing SLT pervasively into the computing infrastructure, as
a tool for evaluating which SLT techniques are useful at
detecting which kinds of problems. For concreteness, we de-
scribe two simple examples: one based on time-series models
and another based on structural models.

4.1 Time Series Models
Time-series models capture repeatable patterns in a ser-

vice’s temporal behavior. For example, the memory used by
a server-like process typically grows until garbage collection
occurs, then falls abruptly. We do not know the period of
this pattern, or indeed whether it is periodic; but we would
expect that multiple servers running the same logic under
reasonable load balancing should behave about the same—
the relative frequencies of garbage-collection events at var-
ious timescales should be comparable across all the repli-
cas. We successfully used this method to detect anomalies
in replicas of SSM, our session state management subsys-
tem [18]. Each replica reports the values of several resource-
usage and forward-progress metrics once per second, and
these time series are fed to the Tarzan algorithm [14], which
discretizes the samples to obtain binary strings and counts
the relative frequencies of all substrings within these strings.
Normally, these relative frequencies are about the same across
all replicas, even if the garbage-collection cycles are out of
phase or their periods vary2. If the relative frequencies of
more than 2/3 of these metrics on some replica differ from
those of the other replicas, that replica is immediately re-
booted. Since SSM’s replication-based design has some in-
herent overprovisioning and each replica is optimized for fast
reboot, rebooting is safe, predictable and non-disruptive. In-
deed, SSM has no concept of “recovery” vs “normal” behav-
ior; since periodic reboots are normal and incur little perfor-
mance cost, the system is “always recovering” by adapting
to changing external conditions through a simple composi-
tion of mechanisms.

We point out that we chose a collection of metrics to mon-
itor that, according to our understanding of the applica-
tion, should have some correlation with successful forward
progress. In practice, we found that either almost none of
the metrics exhibit anomalies, or most of them do, hence
the 2/3 threshold. Although a less naive choice of algorithm
or more careful selection of metrics might be more efficient,
we are encouraged by the baseline results we obtained even
without such optimizations.

4.2 Structural Models
Structural models capture control-flow behavior of an ap-

plication, rather than temporal behavior. Whereas we ap-
plied a simple time-series method above to an application we
built ourselves, we have found structural models useful for
characterizing the behavior of an application whose struc-
ture is not well understood in advance. One example of
a structural model is a path—the inter-component dynamic
call tree resulting from a single request-reply interaction. We
modified an open-source J2EE application server, JBoss, to
dynamically collect such call trees for all incoming requests;
these are then treated as parse trees generated by a proba-
bilistic context-free grammar (PCFG) [19]. Later on, when

2Classical time-series methods are less effective when the
signal period varies.

Figure 1: Detection rate (inverse of false negative rate)

vs. precision (inverse of false positive rate) for PCFG-

based path-shape analysis of PetStore 1.3 running on our

modified JBoss server. Each point represents one exper-

imental run, with shaded tiles representing clustering of

points too densely to depict each one individually. As

sensitivity is increased, false positives as reduced, but

overall detection rate goes down (failures go undetected

in a larger number of experiments, as shown by the clus-

tering of points in the lower-left corner), and even in

experiments in which failures are detected, the average

detection rate goes down.

a path is seen that corresponds to a low-probability parse
tree, the corresponding user request is flagged as anoma-
lous. The scoring function, described in [15], compares the
expected probability of a given inter-component call being
part of a path with the observed frequency of that call within
that path at runtime. Overall, this approach detects over
90% of various injected faults. More interestingly, however,
figure 1 shows that increasing the algorithm’s sensitivity pa-
rameter α reduces the number of false positives (better pre-
cision), but increases the false negative rate (i.e., decreases
the overall detection rate from an average of 68% to an av-
erage of 34%) and increases the number of experiments in
which no failures are detected at all despite fault injection
(i.e. both recall and precision are zero). Hence, in order
to minimize false negatives (maximize recall), we must be
willing to accept nontrivial false positive rates.

The key to our approach is that by making our control
actions non-disruptive and safe, we can in fact tolerate sig-
nificant false positive rates. In this case, we respond by selec-
tively “microrebooting” the suspected-faulty EJB’s without
causing unavailability of the entire application. Although
this work is still in progress, we have demonstrated that
EJB microreboots are predictable and non-disruptive, allow-
ing false positive rates as high as 97% while still incurring
less downtime than a corresponding full reboot [6]. Microre-
boots in J2EE are safe because J2EE constrains application
structure in a way that makes most persistent state man-
agement explicit, allowing us to externalize the session state
into SSM so that it survives microreboots of the EJB’s.

5. DISCUSSION
The combination of low-cost recovery with statistical anomaly

detection raises several interesting additional discussion points;
we focus on three that we believe arise from the novelty of
the approach.

False positives don’t matter. All statistical techniques
are prone to some level of false positives, and a typical trade-
off in anomaly detection algorithms involves the detection
rate (of true failures) vs. the false positive rate (of events
misidentified as anomalous). Historically, minimizing the



false positive rate has been a major goal of algorithm de-
signers. However, by making the cost of acting on a false
positive sufficiently low, not only can we tolerate false pos-
itives, but we can potentially combine overlapping analysis
techniques to improve overall coverage and detection.

Correlation, causation, and diagnosis. We avoid
describing our approach as “diagnosis,” both because di-
agnosis requires application-specific information or human
programmer effort and because techniques such as reboot-
ing illustrate that diagnosis is not always a prerequisite to
repair. Rather, we identify events or behaviors that are
anomalous with respect to failure-free operation, narrow
down to the specific components or subsystems correlated
with the anomaly (we might optimistically call this “local-
ization”), and invoke low-cost techniques that have a good
track record of repairing certain classes of problems whose
true cause may be unknown. One challenge arising from
this approach is systematic misdiagnosis (and the resulting
corrective action) of rare-but-legitimate events, such as an
infrequently-traversed but valid codepath. Even low-cost
recovery, if invoked often enough, begins to interfere with
normal operation. We will address this challenge systemati-
cally but we believe part of the solution involves combining
a number of detection and monitoring methods rather than
relying exclusively on the techniques proposed here.

Application structure. For correctness, we exploited
the fact that today’s Internet applications nicely separate
process recovery from data recovery; in effect, the session
state manipulated between stateless HTTP requests amounts
to a “microcheckpoint” of the application, so that component-
level recovery occurring between microcheckpoints is correctness-
preserving. Nonetheless, the approach is more generally ap-
plicable and is synergistic with projects such as ARMOR [24],
which allows retrofitting existing applications with a “mi-
crocheckpoint” facility.

6. RESEARCH CHALLENGES
We have focused on recasting “recovery” as a kind of rapid

adaptation, but a similar argument applies for other online
operations such as resource management. For example, on-
line repartitioning of a cluster-based hash table [13] can be
achieved by taking one replica offline (which looks like a fail-
ure and does not affect correctness), cloning it, and bringing
both copies back online. The resulting stale data is automat-
ically repaired by normal-case mechanisms, hence no new
machinery is required to implement incremental scaling as
an online operation. This is a fine-grained analog to similar
techniques used in very large scale systems, e.g. a server
farm designed to handle partial failure can be migrated in
two parts by changing the DNS pointer while half the farm
is still operating at each physical site [3].

Most existing implementations of SLT algorithms are of-
fline; our proposal may motivate SLT developers to focus
on online and distributed algorithms. The above experi-
ments show that even an unoptimized offline implementation
of PCFG analysis can process thousands of paths in a few
seconds. This in turn motivates the need for generic data
collection and management architectures for statistically-
monitored systems: even a simple (11K lines of code) appli-
cation we instrumented produces up to 40 observations per
user request, with 1,000 to 10,000 requests per second being
representative of Internet services. Scalable abstractions for
sliding data windows, sampling, fusion of results from dif-
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adaptive system. We have an early prototype of the

application server, have acquired some initial experience

with online detection algorithms, and have explored sim-

ple recovery synthesis based on statistical localization

and microrebooting.

ferent SLT models, etc. will have to be provided, as well as
easy ways to create observation and control points without
requiring intrusive modifications to every application.

Finally, although we have discussed applying SLT ap-
proaches primarily at the application level, we note that the
needed infrastructure is largely in place for applying it at
all levels of functionality all the way down to the hardware.
A legacy of the Active Networking research agenda [22]
is a new generation of user-programmable network devices
for storage virtualization, server load balancing, and traf-
fic management, which provide some of the observation and
control points needed by our approach and allow us to make
“law of large numbers” arguments required by assumption
A1. Figure 2 shows a block-diagram architecture (parts of
which we are already prototyping) for distributed network
applications that exploit SLT-based monitoring at multiple
levels.

7. RELATED WORK
Anomaly detection and classification have been used to

infer errors in systems code [10], debug Windows Registry
problems [23], detect possible violation of runtime variable
assignment invariants [12], and discover source code bugs
by distributed assertion sampling [16]. The latter is par-
ticularly illustrative of SLT’s ability to mine large quanti-
ties of observations for interesting patterns that can be di-
rectly related to dependability. System parameter tuning
and automatic resource provisioning have also been tackled
using PCFG-based approaches [1] and closed-loop control



theory [20], although such approaches generally cannot de-
tect functional or structural deviations in system behavior
unless they manifest as performance anomalies. Finally, the
Recovery-Oriented Computing project [11] has argued that
fast recovery is good for its own sake, but in the context of
SLT, fast recovery is essential because it gives us an inex-
pensive way to deal with false positives. As such, ROC is a
key enabler for this approach, and we build on its success.

8. CONCLUSION
Our ability to design and deploy large complex systems

has outpaced our ability to deterministically predict their
behavior except at the coarsest grain. We believe statistical
approaches, which can find patterns and detect deviations
in data whose semantics are initially unknown, will be a
powerful tool not only for monitoring and online adaptation
of these systems but for helping us better understand their
structure and behavior. In particular, by fitting applica-
tions with low-cost “microrecovery” actions, we can tolerate
nontrivial false positive rates in statistical detection algo-
rithms, allowing us to improve their sensitivity and coverage
to the point where they can detect failures that would go un-
noticed by existing monitoring techniques. We believe our
encouraging initial results with J2EE applications and sim-
ple well-known machine learning algorithms invite deeper
exploration of the approach. A generic platform for per-
vasive integration of SLT methods, themselves the subject
of broad and vigorous research, would hasten the adoption
of SLT into dependable systems, which we believe would in
turn provide a new scientific foundation for the construction
of self-managing systems.
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