

1

Gigabit Rate Packet Pattern-Matching Using TCAM
Fang Yu Randy H. Katz T. V. Lakshman

 EECS Department, UC Berkeley Bell Laboratories, Lucent Technologies
{fyu, randy}@eecs.berkeley.edu lakshman@bell-labs.com

Abstract

In today’s Internet, worms and viruses cause service
disruptions with enormous economic impact. Current attack
prevention mechanisms rely on end-user cooperation to
install new system patches or upgrade security software,
yielding slow reaction time. However, malicious attacks
spread much faster than users can respond, making effec-
tive attack prevention difficult. Network-based mechanisms,
by avoiding end-user coordination, can respond rapidly to
new attacks. Such mechanisms require the network to in-
spect the packet payload at line rates to detect and filter
those packets containing worm signatures. These signature
sets are large (e.g., thousands) and complex. Software-only
implementations are unlikely to meet the performance goals.
Therefore, making a network-based scheme practical re-
quires efficient algorithms suitable for hardware implemen-
tations. This paper develops a Ternary Content Addressable
Memory (TCAM) based multiple-pattern matching scheme.
The scheme can handle complex patterns, such as arbitrar-
ily long patterns, correlated patterns, and patterns with ne-
gation. For the ClamAv[1] virus database with 1768 patterns
whose sizes vary from 6 bytes to 2189 bytes, the proposed
scheme can operate at a 2 Gbps rate with a 240KB TCAM.

1. Introduction

In the current Internet, large number of malicious
probes and worms spread every day. End-host based
solutions rely on security service tools, traffic monitor-
ing tools and anti-virus software. These approaches
have drawbacks in being insufficiently fast to meet new
virus threats, in needing coordinated actions by thou-
sands of enterprises, and in incurring high costs due to
duplicated prevention efforts. The inability to respond
fast is increasingly being exploited by new worms that
are designed to contaminate tens of thousands of hosts
quickly (e.g., in less than an hour). It is hard to install
security upgrades in large numbers of enterprise net-
work clients within such a short time frame. A more
effective approach is to use network based schemes that
stop worm propagation in the network before they reach
a significant number of end users.

Network Intrusion Detection Systems (NIDS) are
well-suited for this purpose. They monitor packets in
the network and scan packet payloads to detect mali-

cious intrusions or Denial of Service (DOS) attacks.
SNORT [2], a popular open source NIDS, has thou-
sands of rules, each specifies an intrusion pattern to be
used for packet payload scanning. However, most cur-
rent network-based security devices can perform only
layer 3 or 4 packet filtering with the packet header.
Line speed filtering based on bit-patterns in packet pay-
loads (content based or layer 7 filtering) is challenging
especially when scanning for thousands of patterns.

Another difficulty in pattern matching is that virus
signature databases often have correlated patterns to
match. For example, Figure 1.a shows an MS-SQL
worm detection rule, which requires matching 4 pat-
terns sequentially. The rule in Figure 1.b is another ex-
ample where the system seeks the first pattern “USER”.
If it does not detect a return key (|0a|) within the next
50 bytes, it will raise an intrusion alarm for overflow
attack attempt. A large number of these complicated
patterns make it hard for pure software-based pattern
matching algorithms to keep up with line rate. The
SNORT system, for example, implements pattern
matching algorithms in software. It can handle link
rates only up to 100Mbps [2] under normal traffic con-
ditions and worst case performance is even less. These
rates are not sufficient to meet the needs of even me-
dium-speed access or edge networks. Since worms and
viruses may possibly originate inside the network,
NIDS are also required to scan packets inside the net-
work, which is usually gigabit rates or higher.

1.b: POP3 User
Overflow Attempt

content:"USER"; nocase;
content:!"|0a|"; within:50;

Figure 1. Example patterns from SNORT rules.

To operate SNORT-like intrusion detection sys-
tems at multi-gigabit rates using hardware acceleration,
one possibility is to use Ternary Content Addressable
Memories (TCAM). TCAMs are widely used for IP
header based processing such as longest prefix match.
Because of their intrinsic parallel search capability,
TCAMs can also be used effectively for the pattern
matching functions needed in intrusion detection sys-
tems. However, TCAMs impose limitations on the pat-
tern length that can be directly matched. Also, there is

content:"|04|"; depth:1;
content:"|81 F1 03 01 04

9B 81 F1 01|";
content:"sock";
content:"send"

1.a: MS-SQL Worm detection.

2

no direct method to handle correlated patterns such as
the example patterns shown in Figure 1. In this paper,
we develop algorithms that use TCAMs to achieve high
speeds while not being restricted to these limitations.

Our work is applicable to other layer 7 pattern
matching problems. For example, applications like
HTTP load balancing, email SPAM filtering, etc., re-
quire packet payload scanning. In this paper, we de-
velop and test algorithms for intrusion detection and
anti-virus signature sets because they are more complex
than the signatures of the applications listed above.

The remainder of this paper is organized as fol-
lows: we review related work and summarize the rele-
vant TCAM background in Section 2. We define a gen-
eralized pattern format based on the analysis of differ-
ent signature sets in Section 3. Section 4 presents our
scheme to map the multiple patterns into TCAM and
efficiently scan packets at high speeds. Section 5 ana-
lyzes our scheme and discusses strategies against mali-
cious attacks. We present simulation studies on both the
real world traces and synthesized worst case traffic in
Section 6 and finally conclude the paper in Section 7.

2. Related Work

Pattern matching problems have been extensively stud-
ied. In this section, we only discuss approaches that are
relevant to the intrusion detection problem. We first
review representative software-based schemes and then
discuss FPGA and Bloom Filter based schemes that are
amenable to hardware implementation. Finally we in-
troduce TCAMs and related work that uses TCAMs.

 Algorithms for software-only schemes
The most influential software-only algorithms are:
Knuth-Morris-Pratt(KMP), Boyer-Moore, Aho-
Corasick, and Commentz-Walter [3] .

The KMP and Boyer-Moore algorithms are de-
signed for single pattern searching. They build skip
tables to avoid back tracking and to help shift forward.
The search time for an m bytes pattern in a n bytes
packet is O(n+m). If there are k patterns, the search
time is O(k(n+m)) , which grows linearly to k.

The Aho-Corasick and Commentz-Walter algo-
rithms match multiple patterns simultaneously. They
both pre-process the patterns and build a finite automa-
ton which can process the input packet in O(n) time.
Although both algorithms are fast, they suffer from an
exponential state explosion. One of the network intru-
sion detection systems, Bro [4], uses a similar determi-
nistic finite automaton based approach. Bro generates
so many states that only a part of the automaton is kept
in memory. The system dynamically extends the
automaton based on runtime information. This degrades
the system performance.

Recently, new pattern matching algorithms specifi-
cally for content-based packet handling have been pro-
posed. The Aho-Corasick-Boyer-Moore (AC_BM) al-
gorithm proposed by Silicon Defense [5] combines the
Boyer-Moore and Aho-Corasick algorithms. Another
new algorithm is the Setwise Boyer-Moore-Horspool
algorithm by Fish et al. [6], whose average case per-
formance is better than Aho-Corasick and Boyer-
Moore. These algorithms greatly improve SNORT’s
pattern matching speed. However, it is still below the
line rate needed for network deployment.

FPGA solutions
FPGAs can be programmed for fast pattern matching
due to their exploitation of reconfigurable hardware
capability and their ability for parallelism. To search for
a regular expression of length n on an FPGA, one solu-
tion is to build a serial machine that requires O(2n)
memory and takes O(1) time per text character. Sidhu et
al. proposed a Nondeterministic Finite Automaton
(NFA) approach using FPGAs [7]. Their approach re-
quires only O(n2) space and is still able to process each
text character in O(1) time.

The above two approaches are optimized for single
keyword searching and do not scale well for multiple
patterns. The recent work by Sidhu et al. uses a modi-
fied KMP algorithm [8]. Each pattern is still treated
independently; however, multiple (100 reported in the
paper) patterns can be pipelined at gigabit rates. The
main concern is that patterns are searched sequentially,
so the overall latency increases proportionally with the
number of patterns.

Bloom filter solutions
Dharmapurikar et al. proposed a multiple-pattern
matching solution using parallel bloom filters [9]. Their
approach can handle thousands of patterns. The pro-
posed scheme builds a bloom filter for each possible
pattern length. This could impose parallelism limits in
some virus databases because pattern lengths vary from
tens to thousands of bytes and there are hundreds of
possible patterns lengths.

TCAM solutions
Ternary Content Addressable Memory (TCAM) is a
type of memory that can perform parallel search at high
speeds. A TCAM consists of a set of entries. The top
entry of the TCAM has the smallest index and the bot-
tom entry has the largest. Each entry is a bit vector of
cells, where every cell can store one bit. Therefore, a
TCAM entry can be used to store a string.

A TCAM works as follows: given an input string,
it compares this string against all entries in its memory
in parallel, and reports one entry that matches the input.
The lookup time (e.g., 4 ns [12]) is deterministic for

3

any input. Unlike a binary CAM, which only has two
states: 0 or 1, each cell in a TCAM can take one of the
three states: 0, 1, or ‘?’ (do not care). With the ‘do not
care’ state, TCAMs can be used for matching variable
prefix CIDR IP addresses and thus can be used in high-
speed IP lookups [10, 11]. Also because of the ‘do not
care’ state, one input may match multiple TCAM en-
tries. In this paper, we assume the use of the widely-
adopted first-match TCAM, which gives out the lowest
index match of the input string if there are multiple
matches as shown in Figure 2.

1 0 0 0

0 1 1 0

1 0 ? ?

Match1 0 0 ?

Input

1
2

3

n

1st entry

 nth entry
Figure 2. TCAM.

Single-chip densities of TCAMs are approaching
2MBs [12]. The width of each entry can be configured
according to user requirements. For example, a 1M
TCAM can be programmed as 64K entries with 16
bytes per entry, or 1K entry with 1K bytes per entry etc.

Binary CAM is proposed as a pattern matching so-
lution [13]. The space needed for k patterns each with w
bytes is just kw bytes of CAM space. To search a packet
of length n, it can provide an answer in a deterministic
time of O(n) CAM lookups. The proposed approach is
for simple patterns of length equal to CAM width. In
this paper, we will present algorithms for arbitrary long
patterns and other complex patterns.

3. Problem definition

We are given a set of k patterns, {P1, P2, …, Pk}. When
k=1, we have a single-pattern matching problem. When
k>1, we have a multiple-pattern matching problem. In
this paper, k is usually a large number (e.g., thousands).
Given a packet of length n, our goal is to report all the
matching patterns in the packet. In this paper, we will
concentrate on two categories of patterns, namely sim-
ple patterns and composite patterns.

3.1. Simple patterns

A simple pattern P of m bytes can be written as P
=b1b2… bm, where each bi represents a byte. The pattern
length m can be different for each pattern. bi can be of
two forms: a deterministic form or a non-deterministic
form. For the deterministic form, every bit of bi is either
0 or 1. It is one specific value of the 28=256 possible
values. For example, bi= 0100 0001 (letter a). For the

non-deterministic form, bi can be any value in a do-
main. Following are two kinds of domains:
1. Case insensitive alphabets: bi ={a, A} ,…., bi ={z, Z}.
2. Wildcard byte (*): bi could be any 28 possible values.

3.2. Composite patterns

Simple patterns can be extended to form composite
patterns like those in Figure 1. From several virus and
worm signature databases, especially SNORT [2], we
identify the following two types of composite patterns:
1. Negation (!). !P denotes no appearance of pattern P.
2. Correlated patterns. If P1 and P2 are two patterns,
P3= P1* P2 is a correlated pattern. This pattern requires
matching P1 first, then some arbitrary content *, and
finally matching pattern P2. Note that * can have infi-
nite length, but usually we will put a length limitation
on it, e.g., equal to four bytes, less than four bytes etc.

3.3. Comparison with regular expressions

Simple and composite patterns can be mapped into Perl
Compatible Regular Expressions (PCRE) [14]. The
case insensitive can be mapped to the “/i” modifier. The
wildcard byte corresponds to “.” meta-character. For
composite patterns: the negation corresponds to “!”
syntax and the correlated patterns can be expressed with
“.*” meta-character between patterns.

Our pattern definition is a subset of PCRE. For ex-
ample, we do not directly support matching “or” rela-
tionship as a regular expression {A|B} has to be split
into two separate patterns in our pattern definition: pat-
tern “A” or pattern “B”. We made this restriction be-
cause patterns used in packet processing are a small
subset of regular expressions. Therefore, we extract
only commonly used pattern formats from the regular
expression. By doing this, the pattern matching process
can be much simpler and faster. We will show later in
Section 6 that the pattern expressions we extracted can
express all the patterns in our pattern database.

4. Multiple-Pattern Matching with TCAM

In this section, we present our TCAM-based pattern-
matching algorithm. We begin with a simple case
where the patterns are shorter than the TCAM width w.
Then in Section 4.2, we describe our solutions for han-
dling long patterns. In Section 4.3, we extend our algo-
rithms to handle correlated patterns.

4.1. Solution for simple patterns

Suppose the width of the TCAM is w bytes. Let us first
look at the simple case where all the patterns are simple
deterministic patterns, with length shorter or equal to w

4

bytes. Our solution is simply putting the patterns into
TCAM, each occupying one entry. If a pattern is shorter
than w bytes, then we pad it with “?” (do not care) bits.
For ease of explanation, in the sequel, we use alphabet
characters rather than binary forms as pattern examples.
We assume that each character is one byte.

Patterns should be organized according to their
lengths in descending order. This is because a TCAM
only reports the first matching result if there are multi-
ple matches and we want to identify all matching pat-
terns. For example, if a pattern “ABC” is put in a lower
index (top end) in TCAM, matching of the “ABC” in-
cludes matching of a shorter pattern “AB”. If we place
patterns in the other order, we can not infer the match-
ing of the longer pattern from matching the shorter pat-
tern. Thus we may miss out some matching results.

The process of finding patterns in a packet is as
follows: The first w bytes in the packet are mapped into
TCAM (Figure 3.a). If there is a hit, then report the
matched pattern. Next, shift one byte and check TCAM
again as shown in Figure 3.b. This process is repeated
until we have read the whole packet. Note that when we
are at the end of the packet and the remaining packet
size t is less than the TCAM width, we can pad it with
all 0s and look it up in TCAM. However, only patterns
less than t bytes should be reported as matches.

w bytes

k entries

A B C D E F

C D E F

A B ? ?

A B C ?

Input

TCAM

3.a First Position

w bytes

A B C D E F

C D E F

A B ? ?

A B C ?

3.b Second Position
Figure 3. Scanning Process.

One TCAM lookup is needed for every byte posi-
tion in the packet. Assuming the TCAM lookup time is
4 ns, it can support a deterministic scan rate of 8 bits/4
ns =2Gbps against thousands of patterns and is able to
report all the matching patterns.

4.2. Long Patterns

We can configure the TCAM width to be larger or
equal to the longest pattern length. However this will
waste TCAM resources as most of the short patterns
have to be padded with the ‘do not care’ states to reach
the TCAM width. As TCAMs are relatively small,
wasting resources by padding is not a good approach.

A better solution is to set the TCAM width smaller
and cut some of the long patterns into shorter patterns
to save TCAM space. At this point, let us assume that
we have identified a good TCAM width w for the given
signature set. Table 1 shows a pattern set with four pat-

terns and the TCAM width is set to be four bytes. For
long patterns (Patterns 1-3) that are cut into shorter pat-
terns, we call the first w bytes prefix patterns and the
remaining part suffix patterns. Patterns shorter than w
bytes (Patten 4) remain intact. The selection of w and
the tradeoffs between a single cycle “long” match and
many cycles of “short” matches will be discussed in
Section 5.

Table 1. Long Pattern Examples.
Pattern
Index

Pattern
Contents

Prefix
Patterns

Suffix
Patterns

1 ABCDABCD ABCD ABCD
2 DEFGABCDL DEFG ABCDL
3 DEFGDEF DEFG DEF
4 DEF - -

4.2.1. Mapping Long Patterns into TCAM
Prefix patterns can be fit into TCAM directly since they
are w bytes. After matching a prefix pattern, we can use
software to compare the suffix patterns. However, there
may be multiple suffix patterns sharing the same prefix
pattern like pattern 2 and 3 in Table 1. In such cases,
the computation costs for software comparisons are still
high.

We choose to put the suffix patterns into the same
TCAM as well. If a suffix pattern is longer than w
bytes, we need to cut it into multiple sub-patterns of w
bytes each. The suffix patterns can be less than w bytes,
or not exactly a multiple of w bytes. They will generate
very short sub-patterns. We can pad those short patterns
with ‘do not care’ states to make them w bytes. The
problem with this approach is that small patterns that
are only one or two bytes greatly increase the probabil-
ity of TCAM hits, thus demand a lot of processing.

To overcome this problem, we pad it in the front by
the tail of previous pattern. For example, the suffix pat-
tern of “DEFGDEF” is “DEF”. We pad it with the tail
of previous prefix pattern (“G”) to make it exactly w
bytes (“GDEF”). Another example is “DEFGABCDL”,
the suffix pattern “ABCDL” is divided into two suffix
patterns of w bytes each: “ABCD” and “BCDL”.

We can order the unique prefix patterns and suffix
patterns in any order because they all have the length w,
so none of them covers another unless they are identi-
cal. For patterns shorter than w bytes (e.g., pattern 4 in
Table 1), similar as before, we will pad them with ‘do
not care’ at the end and sort them according to the de-
scending order of lengths. Table 2 shows TCAM layout
for patterns in Table 1.

The overall process of matching long patterns is as
follows: if we match a prefix pattern at the ith position
of the packet, we record it in memory. Later, if we
match a suffix pattern at position i+ j (0 < j <=w),
check whether the concatenation of this suffix pattern
and the previous prefix pattern forms a long pattern. We
will discuss this process in detail in Section 4.2.3.

5

4.2.2. Data Structures in Memory
There are three data structures to be stored in memory
(e.g., SRAM) for matching long patterns.
A. Pattern Table
All the patterns (simple, prefix, and suffix patterns) are
put into a single TCAM. So, when matching an entry in
TCAM, we need to check what kind of matching it is.
Pattern table (Table 3) records such information. Each
line in the table is correlated with one TCAM entry.

The second column records whether it is a match-
ing of a simple pattern. For example, from a hit of
“DEFG”, we can infer a matching of “DEF”.

The third column shows prefix pattern information.
Positive number illustrates a valid pattern and “-1” in-
dicates otherwise. Since not every entry in TCAM is
related to a prefix pattern, we use a compressed index
to store the index of prefix patterns. At the end of this
section, we will show how this compressed index can
help reduce memory consumption. Column four stores
the compressed index for suffix patterns. Note that the
compress index for suffix patterns is separately built
and thus is independent of the prefix pattern index.
B. Partial Hit List (PHL)
When matching a prefix pattern, we need to record it in
memory. We call the data structure a partial hit list as
shown in Table 4. For example, when matching pattern
“ABCD” at the first four bytes of the packet, we record
the compressed index (1 in this example) and the

starting position of the pattern in the packet (1st byte in
this example) in the PHL.
C. Matching Table
Having identified prefix and suffix patterns with
TCAM hits, next we assemble the prefix with the corre-
sponding suffix patterns to recover valid long patterns.
Matching table (Table 5) stores all the valid combina-
tions. The combination of prefix pattern “DEFG” and
suffix pattern “ABCD” yields a new prefix pattern (an-
notated by 3*). We give the new prefix pattern
(“DEFGABCD”) index 3 as the compressed prefix pat-
tern index and store it back to the PHL. Later, when we
match suffix pattern “BCDL” at the next position, we
can lookup the matching table and conclude that we
have matched pattern “DEGFHIJKL”.

The lookup process appears to be complicated as
we need to search through the mapping table to check
whether one combination is valid. In a real system, we
can trade space for speed. The first three columns can
be used as indices of a three-dimensional array and we
do not need to store those columns. Only matched long
patterns at the corresponding indexed space are stored
and ‘no match’ (-1) is placed at all the other invalid
combination places. In this manner, we can decide
whether a combination is valid or not with only one
memory lookup. The total memory consumption is
a*b*w, where a is the compressed prefix index size, b
is the compressed suffix pattern index size. Here we see
that the compressed index can help save memory con-
sumption for the matching table.

D E F G A B C D L

B C D L

D E F G
A B C D

D E F ?

Position Compressed
Partial Index

1 2

PHL after this position

Position 2: No match.

No match for position 3
and 4 either. So, these
two positions are omit-
ted in the figure.

D E F G A B C D L

D E F ?

D E F G
A B C D

B C D L

Position Compressed
Partial Index

5 3

PHL after this position

Position 5: Match “ABCD”. No short pattern.
 It is a suffix pattern. Combined with prefix
pattern 2 in the PHL yields another prefix pattern
“DEFGABCD” (compressed prefix index is 3 as
shown in the mapping table with *). Insert it into
PHL. The old item (1, 2) can now be deleted since it
is w position away from the next position.
 It is prefix pattern "ABCD", but it is included
by “DEFGABCD”. We will not insert it into PHL.

D E F G A B C D L

D E F ?

D E F G
A B C D

B C D L

Position Compressed
Partial Index

5 3

PHL after this position

Position 6: Match “BCDL”.
 Imply no short pattern.

 This is a suffix pattern.
Combining with
“DEFGABCD” in the PHL,
report a long pattern “DEG-
FABCDL”.

This is not a prefix item.

D E F G A B C D L

B C D L

D E F G
A B C D

D E F ?
PHL after this position

Position Compressed
Partial Index

1 2

Position 1: Match “DEGF”.
 Report short pattern “DEF”
 It is a suffix pattern. But PHL was
empty, so no long pattern is found at
this position.
 It is also a prefix pattern with com-
pressed index 2, so insert such infor-
mation to the PHL.

 Table 2. Table 3. Table 4. Table 5.
 Patterns in the TCAM. Combined Pattern Table. Partial Hit List. Matching Table.

TCAM
Index

Content

 1 ABCD
2 DEFG
3 BCDL
4 GDEF
5 DEF?

Index
(Content)

Simple
Pattern
Index

Prefix
Index

Suffix
Index

1(ABCD) -1 1 1
2(DEFG) 4(DEF) 2 -1
3(BCDL) -1 -1 2
4(GDEF) -1 -1 3
5(DEF ?) 4(DEF) -1 -1

Compressed
Index

Position

1 1

Prefix
Index

Suffix
Index Distance Matched Long

Pattern Index
1(ABCD) 1(ABCD) 4 1(ABCDABCD)
2(DEFG) 1(ABCD) 4 3*(DEGFABCD)
2(DEFG) 3(GDEF) 3 3(DEGFDEF)

3(DEGFABCD) 1(ABCD) 4 1(ABCDABCD)
3(DEGFABCD) 2(BCDL) 1 2(DEFDABCDL)

Figure 4. An Example of Matching Long Patterns in an Input String “DEFGABCDL”.

6

4.2.3 Algorithms for Long Patterns
We use an example (Figure 4) to walk through the algo-
rithm. Suppose the input packet is “DEFGABCDL” and
we want to search for patterns in Table 1.

The initial partial hit list (PHL) is set to be empty.
The algorithm looks up the first w bytes of the packet
payload in TCAM and then shifts one byte at a time.
At each position, if it matches a TCAM entry (e.g.,
“DEFG” in the first position and “ABCD” in the fifth
position), it will consult the combined pattern table and
do the following three steps. First, it will check whether
the matched entry implies simple patterns (e.g., pattern
“DEF” in the first position). Second, if it is a suffix
pattern, it needs to check whether the combination with
any prefix pattern in PHL forms a valid long pattern
through consulting the mapping table (e.g., in position
6, “BCDL” combined with prefix pattern in PHL gen-
erates a long pattern “DEFGABCDL”). In the case that
they form another prefix pattern, we need to add the
new prefix pattern back to the PHL (e.g., in position 5,
“ABCD” combined with previously matched “DEFG”
forms another prefix pattern “DEFGABCD”). Third, if
it is a prefix pattern, the algorithm inserts it into the
PHL if it is not inserted by the previous step (e.g.,
“DEFG” in the first position). Note that, in position 5,
“ABCD” is not inserted because “DEGFABCD” is in-
serted in the previous step, which implies “ABCD”.

No matter what packet position we are at, the size
of PHL is bounded by the TCAM width w. This is be-
cause at each position, we only insert one item into
PHL. In addition, suffix patterns must immediately fol-
low the prefix patterns to form long patterns, so we can
delete the prefix patterns that are w bytes away.

4.3. Solution to Composite Patterns

Simple patterns are not sufficient for intrusion detection
systems such as SNORT. In this section, we extend our
algorithm to handle composite patterns.

4.3.1. Correlated Patterns
Correlated patterns denote series of patterns, i.e., pat-
terns followed by other patterns like “ABCD” followed
by pattern “DEFG” within 4 bytes from the end of the
first pattern. We call the patterns in the pattern series
sub-patterns (e.g., “ABCD” and “DEFG”). Matching a
correlated pattern is similar to a long pattern: a long
pattern is just several sub-patterns and the distance of
these patterns must be exactly w. Hence, the scheme for
long patterns can be extended to correlated patterns.
The matched sub-patterns are also recorded in the PHL.
The only difference is that the partial hit record for sub-
patterns cannot be removed after w positions because
the distance between two sub-patterns can be larger
than w.

4.3.2. Patterns with Negations
Negation of a pattern stands for no occurrence of the
patterns. This is usually the second sub-pattern corre-
lated with another pattern. For example, content :
"USER" ; nocase ; content : !"|0a|" ; within: 50. This
pattern shows that if we see pattern “USER”, then we
want to find "|0a|" (return) in the next 50 bytes. Other-
wise it is an abnormal packet.

The identification of negation of a pattern is similar
to correlated patterns. After matching the first sub-
pattern “USER”, put it in the PHL. In the next 50 bytes,
inspect whether there is a hit for "|0a|". If yes, those two
matches will generate a good match and we will re-
move the index for “USER” from the PHL. Otherwise,
after 50 bytes, we will remove the “USER” from the
PHL and report a hit of pattern "USER" and !"|0a|".

4.3.3. Patterns with Wildcards
Some signature databases specify patterns with “no
case” keyword. This means that either a upper case or a
lower case of the pattern is considered valid. Thanks to
the coding of ASCII, the distance between a lower case
character and its corresponding upper case character is
32. It is a power of 2, so TCAMs can support it easily
with a ‘do not care’ bit. For example, the ASCII code
for letter “A” is 65 (binary form 0100 0001) and letter
“a” is 97 (binary form 0110 0001). So we can represent
case insensitive letter a in the TCAM as (01?0 0001). If
there is a requirement for a fixed width wildcard for any
characters, then we can just put ‘do not care’ states in
all their corresponding positions in the TCAM.

5. Analysis of the Scheme

The scheme of Section 4 covers the key pattern formats
for building anti-virus and intrusion detection systems.
In this section, we will analyze the performance of the
proposed scheme using two metrics. The first metric is
the memory consumption. We want to minimize the
memory consumption for SRAM and especially TCAM
as it is expensive with current manufacturing technolo-
gies. The second metric is pattern scanning rate. It is
affected by the number of TCAM hits since each
TCAM hit requires one memory lookup of the pattern
table. The size of PHL also influences the scan rate
because we need to access mapping table once for each
item in PHL for matched suffix pattern.

Our analysis is three folds: (1) the impact of the
TCAM width on the scheme, (2) the impact of memory
lookups on the system scan rate, and (3) how to avoid
malicious packets that are aimed at slowing down the
system. Due to space limitation, some of the detailed
proofs are omitted. Please refer to the technical report
[15] for details.

7

5.1. Analysis of the TCAM Width

As we mentioned in Section 2, the width (w) of TCAM
is configurable. Here we analyze the impacts of the
TCAM width on matching long patterns. We will per-
form analysis of correlated pattern in Section 5.3.

Effects on TCAM Space
Suppose we have a total of k patterns, each with mi
bytes. If we set the TCAM width to w, then each pattern
will be cut into  wmi / prefix or suffix patterns, where

  denotes rounding up. The total TCAM space re-
quired to accommodate all these patterns is  ∑ wmw i /* .
It increases as w increases because short patterns and
suffix patterns need to be padded to the TCAM width.

Effects on Memory Space for Mapping Table
It can be proved that the size of compressed prefix pat-
tern index is  )1/(−∑

i
i wm . Similarly, the size of com-

pressed suffix pattern index is also  )1/(−∑
i

i wm . Hence,

the memory space for the mapping table is
  2))1/((* −∑

i
i wmw , which decreases as w increases.

Chances of TCAM Hits
We distinguish two types of TCAM hits. One is a “real”
hit, which can report a matched pattern. For a pattern
longer than w, we define the matching of the last suffix
pattern as a real hit. The other type of hit is an “associ-
ate” hit—an intermediate hit that may lead to a real hit,
i.e., each prefix pattern hit is an associate hit. Associate
hits incur extra computation, so next we want to ana-
lyze the probability of associate hits. Assume packet
contents are random, for any w bytes in the packet,
there are (28)w possible values and the chance of match-
ing one particular pattern of length w is 1/(28)w. As we
have analyzed before, there are  )1/(−∑

i
i wm

 prefix pat-

terns of w bytes each and assume they are independent,
the chance of having an “associated” hit at each posi-
tion is  

w
i

i wm

)2(

)1/(

8

−∑ , which decreases dramatically when

w increases. For example, suppose we have 2000 pat-
terns of 200 bytes each. Setting w to be 4 bytes, the
associate hit rate at each position is 2.2e-5. If w is 8, it
is 2.6e-15, which is very low.

Effects on PHL size
As discussed in Section 4.2.3, PHL has an upper bound
of w for pattern sets that contain long patterns only. The
average PHL size is usually very small, the expected

prefix pattern list size:  
w

i
i wm

w
)2(

)1/(
* 8

−∑ , which de-

creases to zero quickly as w grows (the matching at one
position impose restrictions on the matching in
neighbouring positions, please refer to [15] for extra
analyses). For example, suppose there are 2000 patterns
with 200 bytes each. If w is set to be 4 bytes, the ex-
pected size of PHL at each position is 8.8e-5. If w is 8,
it is 2e-14, which is well below 1. We will analyze the
PHL for correlated patterns in the Section 5.3.

Summary on the impacts of TCAM width
The above analyses show that a small w can save
TCAM space. However, a small w also generates many
prefix and suffix patterns, which results in a large map-
ping table. In addition, since each entry in the TCAM is
small, it will report many matches, create a large PHL
and require many matching table lookups. Therefore, if
there is enough TCAM space, we should set w larger
than most of the pattern sizes and allow only a very
small number of patterns to be cut into prefix and suffix
patterns.

5.2. Analysis of Memory Lookups

Memory lookups are usually the bottleneck of packet
processing systems. There are two types of memory
lookups in our scheme: TCAM lookups and regular
memory (e.g., SRAM) lookups in the combined pattern
table and matching table. The process of TCAM look-
ups and the memory lookups can be pipelined. We can
perform the memory lookups for current position while
consulting TCAM with the data at next position. Sup-
pose we have a packet of n bytes and the TCAM lookup
time is a for each lookup, we will have a deterministic
TCAM processing time of n*a.

a aTCAM
Lookup

time

Position

a a a a a a a a

1 2 3 4 5 6 7 8 9 10

Memory
Lookup

time

Performing Memory Lookups Idle

hit hit hit miss miss miss miss miss hit

n'

hit

Figure 5. Memory Lookup Process.
If the TCAM reports a miss, no extra memory

lookup will be initiated in this position i and the mem-
ory lookup process is idle. Otherwise, the proposed
scheme will first perform one memory lookup in the
combined pattern table. If the matched pattern is a valid
suffix pattern and there are ji items in the current PHL,
we need another ji memory lookups in the matching
table. Hence, a maximum of ji+1 memory lookups will
be issued for a TCAM hit. The memory lookup time
may be shorter or longer than the TCAM lookup time,

8

thus the memory lookup process may be backlogged.
For example, in Figure 5, positions 1, 2, and 3 all have
TCAM hits, so the memory lookup process is kept busy
for a while. Later when there are some TCAM misses,
the memory lookup process can catch up with the
TCAM lookup speed. Therefore, only the last memory
backlog position (n’) is important. The overall packet
scan time is the sum of the time needed for the TCAM
accesses up to this position (n’*a) and the memory
lookup time after this position (∑ += ii

n
ni hj *)1('). ji is

usually a very small number (<1) as we analyzed in
Section 5.1. If the TCAM hit rate (hi) is low, the second
term ∑ += ii

n
ni hj *)1(' is small. In such a case, the

speed of the pattern matching is dominated by the
TCAM lookup time. Assuming TCAM lookup time is
4ns, the total time to scan an n bytes packet is 4n ns.
This yields a matching speed of 8*n/4n = 2 Gbps if we
have a small TCAM hit rate and PHL size.

5.3. Protection against Malicious Attacks

For long patterns, we can discard the partial hit results
that are w positions away. This assumption does not
hold for correlated patterns, as the distance between
two sub-patterns can be larger than w. In addition, each
sub-patterns can be smaller than w bytes, which gener-
ates higher TCAM hit rate than longer patterns. Intrud-
ers may intentionally send packets that cause a lot of
partial hits for the correlated pattern to create a long
PHL. Later, when a suffix pattern is matched, a large
number of memory lookups have to be issued and the
system performance degrades dramatically.

To deal with this kind of attack, we study the size
of PHL for correlated patterns. First we answer the
question: if we match a pattern of length m at position i,
what is the chance that we can construct an input to
match another pattern at position i+j? If j is one, it
means matching two patterns one byte apart. Such
probability is low because it requires the first m-1 bytes
of the second pattern are the same as the last m-1 bytes
of the first pattern. It can be proved that given
k independent patterns, the probability is
1-)))2)!*(()2/((()!)2((181818 kmmm k −−− − . For example,
k = 1000 and m=4, it is 0.029, which is low.

When j = m and two patterns do not overlap, in-
truders can pack the sub-patterns consecutively to form
an n bytes packet. This packet generates matches at
every n/m positions, where m is the shortest sub-pattern
length. Thus the PHL can have n/m items or more. To
limit the PHL size, we recommend limiting the max
distance between two sub-patterns to be considered as
correlated. This recommendation is reasonable because
in practice, patterns very far apart are unlikely to be
considered correlated.

6. Simulation Results

6.1. Methodology

We select two complex pattern sets. The first is a virus
signature set from ClamAV [1], which contains simple
patterns only. The second is from the SNORT [2] intru-
sion detection system with many correlated patterns.

We use two sets of real packet traces and a synthe-
sized data trace for pattern scanning. The first real trace
set is the intrusion detection evaluation data set from an
MIT DARPA project [16] that has more than a million
packets. The second real trace is from the Berkeley re-
search group’s local traffic, with more than six million
packets. The synthetic data trace is generated by ran-
domly inserting patterns into the packet payload.

For all the test traces we record the average and
maximum PHL size for each packet. We used three
metrics for the PHL size over the whole trace data. Avg
is the mean of the average PHL size over all packets.
AvgMax denotes the mean of the maximum PHL sizes.
Max records the maximum size over all packets, which
denotes the maximum number of entries in memory for
extreme cases.

6.2. Results on ClamAV Pattern Set

ClamAV (version 0.15) has 1768 simple patterns. The
average pattern length is 55 bytes. Figure 6 plots the
distribution of the pattern length. It varies from 6 bytes
to 2189 bytes.

With such a large variance in pattern lengths, selec-
tion of the TCAM width w is critical. Figure 7 shows
the total TCAM space needed to accommodate all the
patterns under different w settings. As w increases,
TCAM space requirement increases too because of the
padding for short and suffix patterns. This agrees with
our analysis in Section 5.1. The size of mapping table to
be kept in memory, however, is negatively correlated to
TCAM space. When w is small, it generates many pre-
fix and suffix patterns. Therefore, the number of prefix
and suffix indices grows, which results in high memory
consumption for the mapping table. We recommend
setting w as 128 bytes and using a 240KB TCAM.

6.2.1. Test Results on Real Data
Table 6 shows the PHL size for both the MIT and
Berkeley traces. Since these two trances don’t contain
many viruses, the PHL size is extremely low when the
window size is reasonably large. When the size of PHL
is small, the memory lookup process is mostly idle and
the system performance is bounded by the TCAM ac-
cess rate only. So, we can achieve 2Gbps rate with a
240KB TCAM.

9

6.2.2. Test on Synthesized “Worst-case” Packets
We generated four sets of synthesized data, each with 1,
10, and 100 randomly inserted virus patterns per packet
respectively. Compared with the real world traces, syn-
thesized data sets yield a larger PHL size. Figure 8
shows the Avg PHL size. It decreases quickly as we
increase the TCAM width w. In addition, having multi-
ple patterns in the packets does not increase the PHL
size dramatically. This is because we can delete the
prefix patterns that are w bytes ahead, so the number of
patterns in a w bytes window may not increase propor-
tionally to the increase of the total number of patterns
per packet.

The AvgMax PHL size per packet is notably larger
than Avg as plotted in Figure 9. This shows that some
contents in the packets cause backlogs in the memory
lookup process. The effect of the TCAM width again
has great impact—if we set w to be 128 bytes or longer,
the AvgMax PHL size is around one per packet. This
means that even with this “worst-case” data, the mem-
ory lookup process can still finish within one or two
cycles after the TCAM lookup process finishes. This
has the same effect as having the packet one or two
bytes longer. Given the fact that packets consist of at
least tens of bytes and we do not need to perform pat-
tern matching on the packet header, this impact of
slightly increasing the “effective packet length” for
matching purposes is negligible. Hence the packet scan
rate is still 2Gbps over this set of synthesized data.

Figure 10 illustrates the Max PHL size over all
packets. When w is small (e.g., 16), the maximum is
small because the max PHL size is bounded by w.
When w gets larger, the PHL size increases and then
drops quickly because the probability of a TCAM hit
becomes small for a large w. There is a big difference

in the PHL sizes between packets containing 1 virus
pattern and 10 patterns. However, as we increase the
number of viruses per packets, the growth of max PHL
size slows down.

6.3. Results on SNORT Pattern Set

The current version of SNORT system (v2.1.2) contains
1991 rules, of which 1836 contain string patterns. The
lengths of patterns are much shorter than the ClamAV
signature set: mostly from 10 bytes to 100 bytes. In
addition, there is a noticeable amount of short patterns
of one or four bytes. Among the patterns, 1039 are sim-
ple patterns and 527 are correlated patterns with up to
seven sub-patterns in one correlated pattern.

We set the TCAM width to 128 bytes as it covers
most of the SNORT patterns. We successfully ex-
pressed all SNORT patterns using our pattern definition
in Section 3. For patterns containing PCRE [14], we
converted most of them into correlated patterns. For
those of the PCRE patterns requiring matching word
boundary, we add all the combination of ‘\t’, ‘\n’, and
‘ ’ before and after the pattern. After conversion, all the
patterns can be mapped into a TCAM size of 295KB.

Since SNORT has correlated patterns, we first
tested the impact of different window sizes from 20 to
200 bytes. Compared to ClamAV, the PHL size is much
larger as is shown in Table 7. We believe this is be-
cause the SNORT signature set contains a lot of short
patterns. In addition, the size of PHL increases when
the window size increases because it needs to keep the
partial hit information longer. However, as the window
size grows larger, growth of PHL is slower.

A large PHL is problematic since it requires many
memory lookups and slows down the system. There-
fore, we studied the total scanning time (including

MIT Dump Berkeley Dump TCAM
Width Avg AvgM

ax
Max Avg AvgMax Max

4 0.042 0.27 4 0.03 0.48 4
8 4.8e-6 5.6e-4 8 1.e-6 1.9e-5 7

16 0 0 0 4.3e-7 5.8e-6 3
32 0 0 0 0 0 0

64 0 0 0 0 0 0

128 0 0 0 0 0 0

Table 6. PHL Size for ClamAV Signature Set. Figure 6: Distribution of Pattern Length Figure 7. Impact of TCAM Width

0

0.05

0.1

0.15

0.2

0.25

0.3

16 32 64 128 256 512 1024

TCAM width
(in bytes)

A
ve

ra
ge

 P
H

L
Si

ze

1 Pattern/packet

10 Patterns/packet

100 Patterns/packet

0

1

2

3

4

5

16 32 64 128 256 512 1024

TCAM
Width

A
Vg

M
ax

 P
H

L
Si

ze

1 Pattern/packet

10 Patterns/packet

100 Patterns/packet

0

5

10

15

20

16 32 64 128 256 512 1024

TCAM
width

M
ax

 P
ar

tia
l H

it
Li

st
 S

iz
e 1 Pattern/packet

10 Patterns/packet

100 Patterns/packet

Figure 8. Avg of PHL Size. Figure 9. AvgMax PHL Size. Figure 10. Max PHL Size.

0
50

100
150
200
250
300
350
400

1 10 100 1000 10000
Length (bytes)

N
um

be
r o

f P
at

te
rn

s

1

10

100

1000

10000

4 8 16 32 64 12
8

25
6

51
2

10
24 TCAM w idth

(in bytes)

TC
A

M
 S

pa
ce

 (K
B

)

0

0

1

10

100

1000

10000

M
ap

pi
ng

 T
ab

le
 S

iz
e

(M
B

)

TCAM Spaces Cons um ed
Mem ory Space for Mapping Table

10

memory lookups) vs. the time spent on TCAM lookups
only. We call this scan ratio. This ratio is important
because TCAMs have a fixed access rate (e.g., 4ns) and
generate a constant processing rate (2Gbps). Therefore,
we can use them as bases for speed calculation. For
example, if the scan ratio is 2, overall system scan rate
is 2/2=1Gbps. Figure 11 plots this information. Since
memory (e.g., SRAM) access is usually slightly faster
than TCAM access rates, we simulated scenarios with
different ratios of memory to TCAM access times,
(which we call the memory ratio). For example, 1
means memory access speed is equal to TCAM access
speed. 0.2 denotes that memory access speed is 5 times
the TCAM access rate. Figure 11 shows the impact of
memory ratio on the scan ratio, with each curve stand-
ing for one memory ratio setup. Value of 1 (y axis) at
60 percent (x axis) stands for that 60% of the packets
have a scan ratio of 1. Simulation results show that the
scan ratio is less than 1.2 for most of the packet (80%)
under all settings. The TCAM access speed is the bot-
tleneck for these packets. For the remaining around
20% of the packets, the memory access process is back-
logged and therefore the overall system performance is
lower than the TCAM rate. Nevertheless, the max scan
ratio is less than 2 for all setups, which means that we
can have a pattern scan rate of at least 1Gbps.

Table 7. PHL Size for SNORT Signature Set
MIT Dump Berkeley Dump Window

Size Avg AvgMax Max Avg AvgMax Max

20 0.5523 2.7683 8 0.4702 1.5765 12

40 0.9881 3.5376 14 0.6500 1.8661 18

60 1.3151 3.9960 14 0.7313 1.9652 23

80 1.5491 4.2158 16 0.7587 2.0373 24

100 1.6867 4.3485 18 0.7661 2.0740 25

120 1.7725 4.4475 18 0.7669 2.0768 25

140 1.8308 4.5722 19 0.7669 2.0768 25

160 1.8800 4.6643 19 0.7669 2.0768 25

180 1.9244 4.7386 19 0.7669 2.0768 25

200 1.9662 4.8079 20 0.7669 2.0768 25

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

0.6 0.7 0.8 0.9 1
% of Packets

Sc
an

 R
at

io

0.2
0.4
0.6
0.8
1

Memory Ratio

Figure 11. Effects of Memory Ratio on Scan Rate

7. Conclusions

With the increasing importance of network protection
from cyber-attacks, it is essential to develop mecha-
nisms for building effective defenses against virus,
worm, and denial of service attacks. The rapid rise in
link bandwidths implies that network protection
mechanisms must be capable of operating at multi-
gigabit rates. A key operation for network protection is
pattern-matching to check for virus and worm signa-
tures. In this paper, we developed a TCAM based
scheme to solve the packet pattern-matching problem.
Our proposed scheme can scan thousands of patterns
simultaneously at gigabit rates. By evaluating its per-
formance using multiple real-network traces we showed
that it is indeed suitable for multi-gigabit operation.
The scheme can also be extended to achieve even
higher rates with larger TCAMs [15].

References

[1] Clam anti virus signature database, www.clamav.net.
[2] SNORT system, www.snort.org .
[3] G. A. Stephen, “String Searching Algorithms,” Lectures
Notes Series on Computing, Vol. 3, 1994
[4] V. Paxon, “Bro: A System for Detecting Network Intrud-
ers in Real-Time,” Computer Networks, 1999.
[5] C.J. Coit, S. Staniford, and J. McAlerney, “Towards Faster
String Matching for Intrusion Detection or Exceeding the
Speed of Snort,” DARPA Information Survivability Confer-
ence and Exposition (DISCEX II'01), 2001.
[6] M. Fish and G. Varghese, “Fast Content-Based Packet
Handling for Intrusion Detection,” UCSD technical report
CS2001-0670, 2001.
[7] R. Sidhu and V.K. Prasanna, “Fast Regular Expression
Matching using FPGAs,” In FCCM, 2001.
[8] Z.K. Barker and V.K. Prasanna, “Time and Area Efficient
Pattern Matching on FPGAs,” In FPGA, 2004.
[9] S. Dharmapurikar, et al., “Implementation of a Deep
Packet Inspection Circuit using Parallel Bloom Filters in Re-
configurable Hardware,” In Hot Interconnects, 2003.
[10] E. Spitznagel, D. Taylor, and J. Turner, “Packet Classifi-
cation Using Extended TCAMs,” in ICNP, 2003.
[11] P. Gupta, and N. McKeown, “Algorithms for Packet
Classification,” IEEE Network, 2001.
[12] 5512GLQ TCAM from NetLogic Microsystems
[13]M. Gokhake, et. al, “Granidt: Towards Gigabit Rate Net-
work Intrusion Detection,” in the international conference on
Field-Programmable Logic and its Applications (FPL), 2002.
[14] PCRE - Perl Compatible Regular Expressions,
www.pcre.org.
[15] F. Yu, R. H. Katz, and T. V. Laskhman, “Gigabit Rate
Packet Pattern Matching with TCAM”, UCB technical report,
UCB//CSD-04-1341, July 2004
[16] MIT DARPA Intrusion Detection Data Sets,
www.ll.mit.edu/IST/ideval/data/2000/2000_data_index.html

