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Abstract 

In today’s Internet, worms and viruses cause service 
disruptions with enormous economic impact. Current attack 
prevention mechanisms rely on end-user cooperation to 
install new system patches or upgrade security software, 
yielding slow reaction time. However, malicious attacks 
spread much faster than users can respond, making effec-
tive attack prevention difficult. Network-based mechanisms, 
by avoiding end-user coordination, can respond rapidly to 
new attacks. Such mechanisms require the network to in-
spect the packet payload at line rates to detect and filter 
those packets containing worm signatures. These signature 
sets are large (e.g., thousands) and complex. Software-only 
implementations are unlikely to meet the performance goals. 
Therefore, making a network-based scheme practical re-
quires efficient algorithms suitable for hardware implemen-
tations. This paper develops a Ternary Content Addressable 
Memory (TCAM) based multiple-pattern matching scheme. 
The scheme can handle complex patterns, such as arbitrar-
ily long patterns, correlated patterns, and patterns with ne-
gation. For the ClamAv[1] virus database with 1768 patterns 
whose sizes vary from 6 bytes to 2189 bytes, the proposed 
scheme can operate at a 2 Gbps rate with a 240KB TCAM. 

1. Introduction 

In the current Internet, large number of malicious 
probes and worms spread every day. End-host based 
solutions rely on security service tools, traffic monitor-
ing tools and anti-virus software. These approaches 
have drawbacks in being insufficiently fast to meet new 
virus threats, in needing coordinated actions by thou-
sands of enterprises, and in incurring high costs due to 
duplicated prevention efforts. The inability to respond 
fast is increasingly being exploited by new worms that 
are designed to contaminate tens of thousands of hosts 
quickly (e.g., in less than an hour). It is hard to install 
security upgrades in large numbers of enterprise net-
work clients within such a short time frame. A more 
effective approach is to use network based schemes that 
stop worm propagation in the network before they reach 
a significant number of end users.  

Network Intrusion Detection Systems (NIDS) are 
well-suited for this purpose. They monitor packets in 
the network and scan packet payloads to detect mali-

cious intrusions or Denial of Service (DOS) attacks. 
SNORT [2], a popular open source NIDS, has thou-
sands of rules, each specifies an intrusion pattern to be 
used for packet payload scanning. However, most cur-
rent network-based security devices can perform only 
layer 3 or 4 packet filtering with the packet header. 
Line speed filtering based on bit-patterns in packet pay-
loads (content based or layer 7 filtering) is challenging 
especially when scanning for thousands of patterns. 

Another difficulty in pattern matching is that virus 
signature databases often have correlated patterns to 
match. For example, Figure 1.a shows an MS-SQL 
worm detection rule, which requires matching 4 pat-
terns sequentially. The rule in Figure 1.b is another ex-
ample where the system seeks the first pattern “USER”. 
If it does not detect a return key (|0a|) within the next 
50 bytes, it will raise an intrusion alarm for overflow 
attack attempt. A large number of these complicated 
patterns make it hard for pure software-based pattern 
matching algorithms to keep up with line rate. The 
SNORT system, for example, implements pattern 
matching algorithms in software. It can handle link 
rates only up to 100Mbps [2] under normal traffic con-
ditions and worst case performance is even less. These 
rates are not sufficient to meet the needs of even me-
dium-speed access or edge networks.  Since worms and 
viruses may possibly originate inside the network, 
NIDS are also required to scan packets inside the net-
work, which is usually gigabit rates or higher.  

1.b: POP3 User
Overflow Attempt

content:"USER"; nocase;
content:!"|0a|"; within:50;

 
Figure 1. Example patterns from SNORT rules. 

To operate SNORT-like intrusion detection sys-
tems at multi-gigabit rates using hardware acceleration, 
one possibility is to use Ternary Content Addressable 
Memories (TCAM). TCAMs are widely used for IP 
header based processing such as longest prefix match. 
Because of their intrinsic parallel search capability, 
TCAMs can also be used effectively for the pattern 
matching functions needed in intrusion detection sys-
tems. However, TCAMs impose limitations on the pat-
tern length that can be directly matched. Also, there is 

content:"|04|"; depth:1;
content:"|81 F1 03 01 04

9B 81 F1 01|";
content:"sock";
content:"send"

1.a: MS-SQL Worm detection.
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no direct method to handle correlated patterns such as 
the example patterns shown in Figure 1. In this paper, 
we develop algorithms that use TCAMs to achieve high 
speeds while not being restricted to these limitations. 

Our work is applicable to other layer 7 pattern 
matching problems. For example, applications like 
HTTP load balancing, email SPAM filtering, etc., re-
quire packet payload scanning. In this paper, we de-
velop and test algorithms for intrusion detection and 
anti-virus signature sets because they are more complex 
than the signatures of the applications listed above.  

The remainder of this paper is organized as fol-
lows: we review related work and summarize the rele-
vant TCAM background in Section 2. We define a gen-
eralized pattern format based on the analysis of differ-
ent signature sets in Section 3. Section 4 presents our 
scheme to map the multiple patterns into TCAM and 
efficiently scan packets at high speeds. Section 5 ana-
lyzes our scheme and discusses strategies against mali-
cious attacks. We present simulation studies on both the 
real world traces and synthesized worst case traffic in 
Section 6 and finally conclude the paper in Section 7. 

2. Related Work 

Pattern matching problems have been extensively stud-
ied. In this section, we only discuss approaches that are 
relevant to the intrusion detection problem. We first 
review representative software-based schemes and then 
discuss FPGA and Bloom Filter based schemes that are 
amenable to hardware implementation. Finally we in-
troduce TCAMs and related work that uses TCAMs. 

 Algorithms for software-only schemes 
The most influential software-only algorithms are: 
Knuth-Morris-Pratt(KMP), Boyer-Moore, Aho-
Corasick, and Commentz-Walter [3] . 

The KMP and Boyer-Moore algorithms are de-
signed for single pattern searching. They build skip 
tables to avoid back tracking and to help shift forward. 
The search time for an m bytes pattern in a n bytes 
packet is O(n+m). If there are k patterns, the search 
time is O(k(n+m)) , which grows linearly to k.   

The Aho-Corasick and Commentz-Walter algo-
rithms match multiple patterns simultaneously. They 
both pre-process the patterns and build a finite automa-
ton which can process the input packet in O(n) time. 
Although both algorithms are fast, they suffer from an 
exponential state explosion. One of the network intru-
sion detection systems, Bro [4], uses a similar determi-
nistic finite automaton based approach. Bro generates 
so many states that only a part of the automaton is kept 
in memory. The system dynamically extends the 
automaton based on runtime information. This degrades 
the system performance. 

Recently, new pattern matching algorithms specifi-
cally for content-based packet handling have been pro-
posed. The Aho-Corasick-Boyer-Moore (AC_BM) al-
gorithm proposed by Silicon Defense [5] combines the 
Boyer-Moore and Aho-Corasick algorithms. Another 
new algorithm is the Setwise Boyer-Moore-Horspool 
algorithm by Fish et al. [6], whose average case per-
formance is better than Aho-Corasick and Boyer-
Moore. These algorithms greatly improve SNORT’s 
pattern matching speed. However, it is still below the 
line rate needed for network deployment. 

FPGA solutions 
FPGAs can be programmed for fast pattern matching 
due to their exploitation of reconfigurable hardware 
capability and their ability for parallelism. To search for 
a regular expression of length n on an FPGA, one solu-
tion is to build a serial machine that requires O(2n) 
memory and takes O(1) time per text character. Sidhu et 
al. proposed a Nondeterministic Finite Automaton 
(NFA) approach using FPGAs [7]. Their approach re-
quires only O(n2) space and is still able to process each 
text character in O(1) time.  

The above two approaches are optimized for single 
keyword searching and do not scale well for multiple 
patterns. The recent work by Sidhu et al. uses a modi-
fied KMP algorithm [8]. Each pattern is still treated 
independently; however, multiple (100 reported in the 
paper) patterns can be pipelined at gigabit rates. The 
main concern is that patterns are searched sequentially, 
so the overall latency increases proportionally with the 
number of patterns.  

Bloom filter solutions 
Dharmapurikar et al. proposed a multiple-pattern 
matching solution using parallel bloom filters [9]. Their 
approach can handle thousands of patterns.  The pro-
posed scheme builds a bloom filter for each possible 
pattern length. This could impose parallelism limits in 
some virus databases because pattern lengths vary from 
tens to thousands of bytes and there are hundreds of 
possible patterns lengths.   

TCAM solutions 
Ternary Content Addressable Memory (TCAM) is a 
type of memory that can perform parallel search at high 
speeds. A TCAM consists of a set of entries. The top 
entry of the TCAM has the smallest index and the bot-
tom entry has the largest. Each entry is a bit vector of 
cells, where every cell can store one bit. Therefore, a 
TCAM entry can be used to store a string. 

A TCAM works as follows: given an input string, 
it compares this string against all entries in its memory 
in parallel, and reports one entry that matches the input. 
The lookup time (e.g., 4 ns [12]) is deterministic for 
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any input. Unlike a binary CAM, which only has two 
states: 0 or 1, each cell in a TCAM can take one of the 
three states: 0, 1, or ‘?’ (do not care). With the ‘do not 
care’ state, TCAMs can be used for matching variable 
prefix CIDR IP addresses and thus can be used in high-
speed IP lookups [10, 11]. Also because of the ‘do not 
care’ state, one input may match multiple TCAM en-
tries. In this paper, we assume the use of the widely-
adopted first-match TCAM, which gives out the lowest 
index match of the input string if there are multiple 
matches as shown in Figure 2. 

1     0    0    0

0     1     1     0

1     0     ?    ?

Match1     0     0    ?

Input

1
2

3

n

1st entry

 nth entry  
Figure 2. TCAM. 

Single-chip densities of TCAMs are approaching 
2MBs [12]. The width of each entry can be configured 
according to user requirements. For example, a 1M 
TCAM can be programmed as 64K entries with 16 
bytes per entry, or 1K entry with 1K bytes per entry etc.  

Binary CAM is proposed as a pattern matching so-
lution [13]. The space needed for k patterns each with w 
bytes is just kw bytes of CAM space. To search a packet 
of length n, it can provide an answer in a deterministic 
time of O(n) CAM lookups. The proposed approach is 
for simple patterns of length equal to CAM width. In 
this paper, we will present algorithms for arbitrary long 
patterns and other complex patterns.  

3. Problem definition 

We are given a set of k patterns, {P1, P2, …, Pk}. When 
k=1, we have a single-pattern matching problem. When 
k>1, we have a multiple-pattern matching problem. In 
this paper, k is usually a large number (e.g., thousands). 
Given a packet of length n, our goal is to report all the 
matching patterns in the packet. In this paper, we will 
concentrate on two categories of patterns, namely sim-
ple patterns and composite patterns. 

3.1. Simple patterns 

A simple pattern P of m bytes can be written as P 
=b1b2… bm, where each bi represents a byte. The pattern 
length m can be different for each pattern. bi can be of 
two forms: a deterministic form or a non-deterministic 
form. For the deterministic form, every bit of bi is either 
0 or 1. It is one specific value of the 28=256 possible 
values. For example, bi= 0100 0001 (letter a). For the 

non-deterministic form, bi can be any value in a do-
main. Following are two kinds of domains: 
1. Case insensitive alphabets: bi ={a, A} ,…., bi ={z, Z}. 
2. Wildcard byte (*): bi could be any 28 possible values. 

3.2. Composite patterns 

Simple patterns can be extended to form composite 
patterns like those in Figure 1. From several virus and 
worm signature databases, especially SNORT [2], we 
identify the following two types of composite patterns: 
1. Negation (!). !P denotes no appearance of pattern P. 
2. Correlated patterns. If P1 and P2 are two patterns, 
P3= P1* P2 is a correlated pattern. This pattern requires 
matching P1 first, then some arbitrary content *, and 
finally matching pattern P2. Note that * can have infi-
nite length, but usually we will put a length limitation 
on it, e.g., equal to four bytes, less than four bytes etc. 

3.3. Comparison with regular expressions 

Simple and composite patterns can be mapped into Perl 
Compatible Regular Expressions (PCRE) [14].  The 
case insensitive can be mapped to the “/i” modifier. The 
wildcard byte corresponds to “.” meta-character. For 
composite patterns: the negation corresponds to “!” 
syntax and the correlated patterns can be expressed with 
“.*” meta-character between patterns. 

Our pattern definition is a subset of PCRE. For ex-
ample, we do not directly support matching “or” rela-
tionship as a regular expression {A|B} has to be split 
into two separate patterns in our pattern definition: pat-
tern “A” or pattern “B”. We made this restriction be-
cause patterns used in packet processing are a small 
subset of regular expressions. Therefore, we extract 
only commonly used pattern formats from the regular 
expression. By doing this, the pattern matching process 
can be much simpler and faster. We will show later in 
Section 6 that the pattern expressions we extracted can 
express all the patterns in our pattern database. 

4. Multiple-Pattern Matching with TCAM 

In this section, we present our TCAM-based pattern-
matching algorithm. We begin with a simple case 
where the patterns are shorter than the TCAM width w. 
Then in Section 4.2, we describe our solutions for han-
dling long patterns. In Section 4.3, we extend our algo-
rithms to handle correlated patterns.  

4.1. Solution for simple patterns 

Suppose the width of the TCAM is w bytes. Let us first 
look at the simple case where all the patterns are simple 
deterministic patterns, with length shorter or equal to w 
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bytes. Our solution is simply putting the patterns into 
TCAM, each occupying one entry. If a pattern is shorter 
than w bytes, then we pad it with “?” (do not care) bits. 
For ease of explanation, in the sequel, we use alphabet 
characters rather than binary forms as pattern examples. 
We assume that each character is one byte. 

Patterns should be organized according to their 
lengths in descending order. This is because a TCAM 
only reports the first matching result if there are multi-
ple matches and we want to identify all matching pat-
terns. For example, if a pattern “ABC” is put in a lower 
index (top end) in TCAM, matching of the “ABC” in-
cludes matching of a shorter pattern “AB”. If we place 
patterns in the other order, we can not infer the match-
ing of the longer pattern from matching the shorter pat-
tern. Thus we may miss out some matching results.  

The process of finding patterns in a packet is as 
follows: The first w bytes in the packet are mapped into 
TCAM (Figure 3.a). If there is a hit, then report the 
matched pattern. Next, shift one byte and check TCAM 
again as shown in Figure 3.b. This process is repeated 
until we have read the whole packet. Note that when we 
are at the end of the packet and the remaining packet 
size t is less than the TCAM width, we can pad it with 
all 0s and look it up in TCAM. However, only patterns 
less than t bytes should be reported as matches. 

w bytes

k entries

A     B    C    D     E      F

C     D    E     F

A     B    ?    ?

A     B    C    ?

Input

TCAM

3.a First Position

w bytes

A     B    C    D     E      F

C     D    E     F

A     B    ?    ?

A     B    C    ?

3.b Second Position  
Figure 3. Scanning Process. 

One TCAM lookup is needed for every byte posi-
tion in the packet. Assuming the TCAM lookup time is 
4 ns, it can support a deterministic scan rate of 8 bits/4 
ns =2Gbps against thousands of patterns and is able to 
report all the matching patterns.  

4.2. Long Patterns 

We can configure the TCAM width to be larger or 
equal to the longest pattern length. However this will 
waste TCAM resources as most of the short patterns 
have to be padded with the ‘do not care’ states to reach 
the TCAM width. As TCAMs are relatively small, 
wasting resources by padding is not a good approach.  

A better solution is to set the TCAM width smaller 
and cut some of the long patterns into shorter patterns 
to save TCAM space. At this point, let us assume that 
we have identified a good TCAM width w for the given 
signature set. Table 1 shows a pattern set with four pat-

terns and the TCAM width is set to be four bytes. For 
long patterns (Patterns 1-3) that are cut into shorter pat-
terns, we call the first w bytes prefix patterns and the 
remaining part suffix patterns. Patterns shorter than w 
bytes (Patten 4) remain intact. The selection of w and 
the tradeoffs between a single cycle “long” match and 
many cycles of “short” matches will be discussed in 
Section 5. 

Table 1. Long Pattern Examples. 
Pattern 
Index 

Pattern  
Contents 

Prefix 
Patterns 

Suffix 
Patterns  

1 ABCDABCD ABCD ABCD 
2 DEFGABCDL DEFG ABCDL 
3 DEFGDEF DEFG DEF 
4 DEF - - 

4.2.1. Mapping Long Patterns into TCAM 
Prefix patterns can be fit into TCAM directly since they 
are w bytes. After matching a prefix pattern, we can use 
software to compare the suffix patterns. However, there 
may be multiple suffix patterns sharing the same prefix 
pattern like pattern 2 and 3 in Table 1. In such cases, 
the computation costs for software comparisons are still 
high. 

We choose to put the suffix patterns into the same 
TCAM as well. If a suffix pattern is longer than w 
bytes, we need to cut it into multiple sub-patterns of w 
bytes each. The suffix patterns can be less than w bytes, 
or not exactly a multiple of w bytes. They will generate 
very short sub-patterns. We can pad those short patterns 
with ‘do not care’ states to make them w bytes. The 
problem with this approach is that small patterns that 
are only one or two bytes greatly increase the probabil-
ity of TCAM hits, thus demand a lot of processing. 

To overcome this problem, we pad it in the front by 
the tail of previous pattern. For example, the suffix pat-
tern of “DEFGDEF” is “DEF”. We pad it with the tail 
of previous prefix pattern (“G”) to make it exactly w 
bytes (“GDEF”). Another example is “DEFGABCDL”, 
the suffix pattern “ABCDL” is divided into two suffix 
patterns of w bytes each: “ABCD” and “BCDL”. 

We can order the unique prefix patterns and suffix 
patterns in any order because they all have the length w, 
so none of them covers another unless they are identi-
cal. For patterns shorter than w bytes (e.g., pattern 4 in 
Table 1), similar as before, we will pad them with ‘do 
not care’ at the end and sort them according to the de-
scending order of lengths. Table 2 shows TCAM layout 
for patterns in Table 1.  

The overall process of matching long patterns is as 
follows: if we match a prefix pattern at the ith position 
of the packet, we record it in memory. Later, if we 
match a suffix pattern at position i+ j (0 < j <=w), 
check whether the concatenation of this suffix pattern 
and the previous prefix pattern forms a long pattern. We 
will discuss this process in detail in Section 4.2.3. 
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4.2.2. Data Structures in Memory 
There are three data structures to be stored in memory 
(e.g., SRAM) for matching long patterns. 
A. Pattern Table 
All the patterns (simple, prefix, and suffix patterns) are 
put into a single TCAM. So, when matching an entry in 
TCAM, we need to check what kind of matching it is. 
Pattern table (Table 3) records such information. Each 
line in the table is correlated with one TCAM entry. 

The second column records whether it is a match-
ing of a simple pattern. For example, from a hit of 
“DEFG”, we can infer a matching of “DEF”.  

The third column shows prefix pattern information. 
Positive number illustrates a valid pattern and “-1” in-
dicates otherwise. Since not every entry in TCAM is 
related to a prefix pattern, we use a compressed index 
to store the index of prefix patterns. At the end of this 
section, we will show how this compressed index can 
help reduce memory consumption. Column four stores 
the compressed index for suffix patterns. Note that the 
compress index for suffix patterns is separately built 
and thus is independent of the prefix pattern index. 
B. Partial Hit List (PHL) 
When matching a prefix pattern, we need to record it in 
memory. We call the data structure a partial hit list as 
shown in Table 4. For example, when matching pattern 
“ABCD” at the first four bytes of the packet, we record 
the  compressed   index  (1  in   this   example)  and  the  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

starting position of the pattern in the packet (1st byte in 
this example) in the PHL. 
C. Matching Table 
Having identified prefix and suffix patterns with 
TCAM hits, next we assemble the prefix with the corre-
sponding suffix patterns to recover valid long patterns. 
Matching table (Table 5) stores all the valid combina-
tions. The combination of prefix pattern “DEFG” and 
suffix pattern “ABCD” yields a new prefix pattern (an-
notated by 3*). We give the new prefix pattern 
(“DEFGABCD”) index 3 as the compressed prefix pat-
tern index and store it back to the PHL. Later, when we 
match suffix pattern “BCDL” at the next position, we 
can lookup the matching table and conclude that we 
have matched pattern “DEGFHIJKL”. 

The lookup process appears to be complicated as 
we need to search through the mapping table to check 
whether one combination is valid. In a real system, we 
can trade space for speed. The first three columns can 
be used as indices of a three-dimensional array and we 
do not need to store those columns. Only matched long 
patterns at the corresponding indexed space are stored 
and ‘no match’ (-1) is placed at all the other invalid 
combination places. In this manner, we can decide 
whether a combination is valid or not with only one 
memory lookup. The total memory consumption is 
a*b*w, where a is the compressed prefix index size, b 
is the compressed suffix pattern index size. Here we see 
that the compressed index can help save memory con-
sumption for the matching table. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

D     E     F     G     A    B    C    D   L

B     C    D   L

D     E     F    G
A     B    C    D

D     E     F    ?  

Position Compressed
Partial Index

1 2

PHL after this position

 

Position 2: No match.  
 
No match for position 3 
and 4 either. So, these 
two positions are omit-
ted in the figure. 
 

D     E     F     G     A    B    C    D   L

D     E    F    ?

D     E     F    G
A     B    C    D

B     C    D   L

 

Position Compressed
Partial Index

5 3

PHL after this position

 

Position 5: Match “ABCD”. No short pattern. 
    It is a suffix pattern. Combined with prefix 
pattern 2 in the PHL yields another prefix pattern 
“DEFGABCD” (compressed prefix index is 3 as 
shown in the mapping table with *). Insert it into 
PHL. The old item (1, 2) can now be deleted since it 
is w position away from the next position.  
    It is prefix pattern "ABCD", but it is included 
by “DEFGABCD”. We will not insert it into PHL. 
 

D     E     F     G     A    B    C    D   L

D     E    F    ?

D     E     F    G
A     B    C    D

B     C    D   L

 

Position Compressed
Partial Index

5 3

PHL after this position

 

Position 6: Match “BCDL”.  
     Imply no short pattern. 

 This is a suffix pattern. 
Combining with 
“DEFGABCD” in the PHL, 
report a long pattern “DEG-
FABCDL”. 

This is not a prefix item. 
 

D     E     F     G     A    B    C    D   L

B     C    D   L

D     E     F    G
A     B    C    D

D     E     F    ?  
PHL after this position

Position Compressed
Partial Index

1 2
 

Position 1: Match “DEGF”.  
    Report short pattern “DEF” 
    It is a suffix pattern. But PHL was 
empty, so no long pattern is found at 
this position. 
    It is also a prefix pattern with com-
pressed index 2, so insert such infor-
mation to the PHL. 

           Table 2.             Table 3.     Table 4.          Table 5. 
 Patterns in the TCAM.   Combined Pattern Table.                  Partial Hit List.                Matching Table. 

TCAM 
Index 

Content 

 1 ABCD 
2 DEFG 
3 BCDL 
4 GDEF 
5 DEF? 

Index 
(Content) 

Simple 
Pattern 
Index 

Prefix 
Index 

Suffix 
Index

1(ABCD) -1 1 1 
2(DEFG) 4(DEF) 2 -1 
3(BCDL) -1 -1 2 
4(GDEF) -1 -1 3 
5(DEF ?) 4(DEF) -1 -1 

Compressed 
Index 

Position 

1 1 
 

Prefix  
Index 

Suffix  
Index Distance Matched Long 

Pattern Index 
1(ABCD) 1(ABCD) 4 1(ABCDABCD)
2(DEFG) 1(ABCD) 4 3*(DEGFABCD)
2(DEFG) 3(GDEF) 3 3(DEGFDEF) 

3(DEGFABCD) 1(ABCD) 4 1(ABCDABCD)
3(DEGFABCD) 2(BCDL) 1 2(DEFDABCDL)

Figure 4. An Example of Matching Long Patterns in an Input String “DEFGABCDL”. 
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4.2.3 Algorithms for Long Patterns 
We use an example (Figure 4) to walk through the algo-
rithm. Suppose the input packet is “DEFGABCDL” and 
we want to search for patterns in Table 1.  

The initial partial hit list (PHL) is set to be empty. 
The algorithm looks up the first w bytes of the packet 
payload in TCAM and then shifts one byte at a time.  
At each position, if it matches a TCAM entry (e.g., 
“DEFG” in the first position and “ABCD” in the fifth 
position), it will consult the combined pattern table and 
do the following three steps. First, it will check whether 
the matched entry implies simple patterns (e.g., pattern 
“DEF” in the first position). Second, if it is a suffix 
pattern, it needs to check whether the combination with 
any prefix pattern in PHL forms a valid long pattern 
through consulting the mapping table (e.g., in position 
6, “BCDL” combined with prefix pattern in PHL gen-
erates a long pattern “DEFGABCDL”). In the case that 
they form another prefix pattern, we need to add the 
new prefix pattern back to the PHL (e.g., in position 5, 
“ABCD” combined with previously matched “DEFG” 
forms another prefix pattern “DEFGABCD”). Third, if 
it is a prefix pattern, the algorithm inserts it into the 
PHL if it is not inserted by the previous step (e.g., 
“DEFG” in the first position). Note that, in position 5, 
“ABCD” is not inserted because “DEGFABCD” is in-
serted in the previous step, which implies “ABCD”. 

No matter what packet position we are at, the size 
of PHL is bounded by the TCAM width w. This is be-
cause at each position, we only insert one item into 
PHL. In addition, suffix patterns must immediately fol-
low the prefix patterns to form long patterns, so we can 
delete the prefix patterns that are w bytes away. 

4.3. Solution to Composite Patterns 

Simple patterns are not sufficient for intrusion detection 
systems such as SNORT. In this section, we extend our 
algorithm to handle composite patterns. 

4.3.1. Correlated Patterns 
Correlated patterns denote series of patterns, i.e., pat-
terns followed by other patterns like “ABCD” followed 
by pattern “DEFG” within 4 bytes from the end of the 
first pattern. We call the patterns in the pattern series 
sub-patterns (e.g., “ABCD” and “DEFG”). Matching a 
correlated pattern is similar to a long pattern: a long 
pattern is just several sub-patterns and the distance of 
these patterns must be exactly w. Hence, the scheme for 
long patterns can be extended to correlated patterns. 
The matched sub-patterns are also recorded in the PHL. 
The only difference is that the partial hit record for sub-
patterns cannot be removed after w positions because 
the distance between two sub-patterns can be larger 
than w.  

4.3.2. Patterns with Negations 
Negation of a pattern stands for no occurrence of the 
patterns. This is usually the second sub-pattern corre-
lated with another pattern. For example, content : 
"USER" ; nocase ; content : !"|0a|" ; within: 50. This 
pattern shows that if we see pattern “USER”, then we 
want to find "|0a|" (return) in the next 50 bytes. Other-
wise it is an abnormal packet.  

The identification of negation of a pattern is similar 
to correlated patterns. After matching the first sub-
pattern “USER”, put it in the PHL. In the next 50 bytes, 
inspect whether there is a hit for "|0a|". If yes, those two 
matches will generate a good match and we will re-
move the index for “USER” from the PHL. Otherwise, 
after 50 bytes, we will remove the “USER” from the 
PHL and report a hit of pattern "USER" and !"|0a|". 

4.3.3. Patterns with Wildcards 
Some signature databases specify patterns with “no 
case” keyword. This means that either a upper case or a 
lower case of the pattern is considered valid. Thanks to 
the coding of ASCII, the distance between a lower case 
character and its corresponding upper case character is 
32. It is a power of 2, so TCAMs can support it easily 
with a ‘do not care’ bit. For example, the ASCII code 
for letter “A” is 65 (binary form 0100 0001) and letter 
“a” is 97 (binary form 0110 0001). So we can represent 
case insensitive letter a in the TCAM as (01?0 0001). If 
there is a requirement for a fixed width wildcard for any 
characters, then we can just put ‘do not care’ states in 
all their corresponding positions in the TCAM.  

5. Analysis of the Scheme 

The scheme of Section 4 covers the key pattern formats 
for building anti-virus and intrusion detection systems. 
In this section, we will analyze the performance of the 
proposed scheme using two metrics. The first metric is 
the memory consumption. We want to minimize the 
memory consumption for SRAM and especially TCAM 
as it is expensive with current manufacturing technolo-
gies. The second metric is pattern scanning rate. It is 
affected by the number of TCAM hits since each 
TCAM hit requires one memory lookup of the pattern 
table. The size of PHL also influences the scan rate 
because we need to access mapping table once for each 
item in PHL for matched suffix pattern. 

Our analysis is three folds: (1) the impact of the 
TCAM width on the scheme, (2) the impact of memory 
lookups on the system scan rate, and (3) how to avoid 
malicious packets that are aimed at slowing down the 
system. Due to space limitation, some of the detailed 
proofs are omitted. Please refer to the technical report 
[15] for details. 
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5.1. Analysis of the TCAM Width 

As we mentioned in Section 2, the width (w) of TCAM 
is configurable. Here we analyze the impacts of the 
TCAM width on matching long patterns. We will per-
form analysis of correlated pattern in Section 5.3. 

Effects on TCAM Space  
Suppose we have a total of k patterns, each with mi 
bytes. If we set the TCAM width to w, then each pattern 
will be cut into  wmi /  prefix or suffix patterns, where 

   denotes rounding up. The total TCAM space re-
quired to accommodate all these patterns is  ∑ wmw i /* . 
It increases as w increases because short patterns and 
suffix patterns need to be padded to the TCAM width.  

Effects on Memory Space for Mapping Table 
It can be proved that the size of compressed prefix pat-
tern index is   )1/( −∑

i
i wm . Similarly, the size of com-

pressed suffix pattern index is also   )1/( −∑
i

i wm . Hence, 

the memory space for the mapping table is 
  2))1/((* −∑

i
i wmw , which decreases as w increases. 

Chances of TCAM Hits 
We distinguish two types of TCAM hits. One is a “real” 
hit, which can report a matched pattern. For a pattern 
longer than w, we define the matching of the last suffix 
pattern as a real hit. The other type of hit is an “associ-
ate” hit—an intermediate hit that may lead to a real hit, 
i.e., each prefix pattern hit is an associate hit. Associate 
hits incur extra computation, so next we want to ana-
lyze the probability of associate hits. Assume packet 
contents are random, for any w bytes in the packet, 
there are (28)w possible values and the chance of match-
ing one particular pattern of length w is 1/(28)w. As we 
have analyzed before, there are   )1/( −∑

i
i wm

 prefix pat-

terns of w bytes each and assume they are independent, 
the chance of having an “associated” hit at each posi-
tion is  

w
i

i wm

)2(

)1/(

8

−∑ , which decreases dramatically when 

w increases. For example, suppose we have 2000 pat-
terns of 200 bytes each. Setting w to be 4 bytes, the 
associate hit rate at each position is 2.2e-5. If w is 8, it 
is 2.6e-15, which is very low.  

Effects on PHL size 
As discussed in Section 4.2.3, PHL has an upper bound 
of w for pattern sets that contain long patterns only. The 
average PHL size is usually very small, the expected 

prefix pattern list size:  
w

i
i wm

w
)2(

)1/(
* 8

−∑ , which de-

creases to zero quickly as w grows (the matching at one  
position impose restrictions on the matching in 
neighbouring positions, please refer to [15] for extra 
analyses). For example, suppose there are 2000 patterns 
with 200 bytes each. If w is set to be 4 bytes, the ex-
pected size of PHL at each position is 8.8e-5. If w is 8, 
it is 2e-14, which is well below 1. We will analyze the 
PHL for correlated patterns in the Section 5.3.  

Summary on the impacts of TCAM width 
The above analyses show that a small w can save 
TCAM space. However, a small w also generates many 
prefix and suffix patterns, which results in a large map-
ping table. In addition, since each entry in the TCAM is 
small, it will report many matches, create a large PHL 
and require many matching table lookups. Therefore, if 
there is enough TCAM space, we should set w larger 
than most of the pattern sizes and allow only a very 
small number of patterns to be cut into prefix and suffix 
patterns. 

5.2. Analysis of Memory Lookups 

Memory lookups are usually the bottleneck of packet 
processing systems. There are two types of memory 
lookups in our scheme: TCAM lookups and regular 
memory (e.g., SRAM) lookups in the combined pattern 
table and matching table. The process of TCAM look-
ups and the memory lookups can be pipelined. We can 
perform the memory lookups for current position while 
consulting TCAM with the data at next position. Sup-
pose we have a packet of n bytes and the TCAM lookup 
time is a for each lookup, we will have a deterministic 
TCAM processing time of n*a.  

a aTCAM
Lookup

time

Position

a a a a a a a a

1 2 3 4 5 6 7 8 9 10

Memory
Lookup

time

Performing Memory Lookups Idle

hit hit hit miss miss miss miss miss hit

n'

hit

Figure 5. Memory Lookup Process. 
If the TCAM reports a miss, no extra memory 

lookup will be initiated in this position i and the mem-
ory lookup process is idle. Otherwise, the proposed 
scheme will first perform one memory lookup in the 
combined pattern table. If the matched pattern is a valid 
suffix pattern and there are ji items in the current PHL, 
we need another ji memory lookups in the matching 
table. Hence, a maximum of ji+1 memory lookups will 
be issued for a TCAM hit. The memory lookup time 
may be shorter or longer than the TCAM lookup time, 
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thus the memory lookup process may be backlogged. 
For example, in Figure 5, positions 1, 2, and 3 all have 
TCAM hits, so the memory lookup process is kept busy 
for a while. Later when there are some TCAM misses, 
the memory lookup process can catch up with the 
TCAM lookup speed. Therefore, only the last memory 
backlog position (n’) is important. The overall packet 
scan time is the sum of the time needed for the TCAM 
accesses up to this position (n’*a) and the memory 
lookup time after this position (∑ += ii

n
ni hj *)1(' ). ji is 

usually a very small number (<1) as we analyzed in 
Section 5.1. If the TCAM hit rate (hi) is low, the second 
term ∑ += ii

n
ni hj *)1(' is small. In such a case, the 

speed of the pattern matching is dominated by the 
TCAM lookup time. Assuming TCAM lookup time is 
4ns, the total time to scan an n bytes packet is 4n ns. 
This yields a matching speed of 8*n/4n = 2 Gbps if we 
have a small TCAM hit rate and PHL size. 

5.3. Protection against Malicious Attacks 

For long patterns, we can discard the partial hit results 
that are w positions away. This assumption does not 
hold for correlated patterns, as the distance between 
two sub-patterns can be larger than w. In addition, each 
sub-patterns can be smaller than w bytes, which gener-
ates higher TCAM hit rate than longer patterns. Intrud-
ers may intentionally send packets that cause a lot of 
partial hits for the correlated pattern to create a long 
PHL. Later, when a suffix pattern is matched, a large 
number of memory lookups have to be issued and the 
system performance degrades dramatically. 

To deal with this kind of attack, we study the size 
of PHL for correlated patterns. First we answer the 
question: if we match a pattern of length m at position i, 
what is the chance that we can construct an input to 
match another pattern at position i+j? If j is one, it 
means matching two patterns one byte apart. Such 
probability is low because it requires the first m-1 bytes 
of the second pattern are the same as the last m-1 bytes 
of the first    pattern.    It can be   proved   that    given  
k  independent       patterns,     the       probability      is  
1- )))2)!*(()2/((()!)2(( 181818 kmmm k −−− − . For example, 
k = 1000 and m=4, it is 0.029, which is low.  

When j = m and two patterns do not overlap, in-
truders can pack the sub-patterns consecutively to form 
an n bytes packet. This packet generates matches at 
every n/m positions, where m is the shortest sub-pattern 
length. Thus the PHL can have n/m items or more. To 
limit the PHL size, we recommend limiting the max 
distance between two sub-patterns to be considered as 
correlated. This recommendation is reasonable because 
in practice, patterns very far apart are unlikely to be 
considered correlated. 

6. Simulation Results 

6.1. Methodology 

We select two complex pattern sets. The first is a virus 
signature set from ClamAV [1], which contains simple 
patterns only. The second is from the SNORT [2] intru-
sion detection system with many correlated patterns.  

We use two sets of real packet traces and a synthe-
sized data trace for pattern scanning. The first real trace 
set is the intrusion detection evaluation data set from an 
MIT DARPA project [16] that has more than a million 
packets. The second real trace is from the Berkeley re-
search group’s local traffic, with more than six million 
packets.  The synthetic data trace is generated by ran-
domly inserting patterns into the packet payload.  

For all the test traces we record the average and 
maximum PHL size for each packet. We used three 
metrics for the PHL size over the whole trace data. Avg 
is the mean of the average PHL size over all packets. 
AvgMax denotes the mean of the maximum PHL sizes. 
Max records the maximum size over all packets, which 
denotes the maximum number of entries in memory for 
extreme cases.  

6.2. Results on ClamAV Pattern Set 

ClamAV (version 0.15) has 1768 simple patterns. The 
average pattern length is 55 bytes. Figure 6 plots the 
distribution of the pattern length. It varies from 6 bytes 
to 2189 bytes.  

With such a large variance in pattern lengths, selec-
tion of the TCAM width w is critical. Figure 7 shows 
the total TCAM space needed to accommodate all the 
patterns under different w settings. As w increases, 
TCAM space requirement increases too because of the 
padding for short and suffix patterns. This agrees with 
our analysis in Section 5.1. The size of mapping table to 
be kept in memory, however, is negatively correlated to 
TCAM space. When w is small, it generates many pre-
fix and suffix patterns. Therefore, the number of prefix 
and suffix indices grows, which results in high memory 
consumption for the mapping table. We recommend 
setting w as 128 bytes and using a 240KB TCAM. 

6.2.1. Test Results on Real Data 
Table 6 shows the PHL size for both the MIT and 
Berkeley traces. Since these two trances don’t contain 
many viruses, the PHL size is extremely low when the 
window size is reasonably large. When the size of PHL 
is small, the memory lookup process is mostly idle and 
the system performance is bounded by the TCAM ac-
cess rate only.  So, we can achieve 2Gbps rate with a 
240KB TCAM. 



 
9

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2.2. Test on Synthesized “Worst-case” Packets 
We generated four sets of synthesized data, each with 1, 
10, and 100 randomly inserted virus patterns per packet 
respectively. Compared with the real world traces, syn-
thesized data sets yield a larger PHL size. Figure 8 
shows the Avg PHL size. It decreases quickly as we 
increase the TCAM width w. In addition, having multi-
ple patterns in the packets does not increase the PHL 
size dramatically. This is because we can delete the 
prefix patterns that are w bytes ahead, so the number of 
patterns in a w bytes window may not increase propor-
tionally to the increase of the total number of patterns 
per packet.  

The AvgMax PHL size per packet is notably larger 
than Avg as plotted in Figure 9. This shows that some 
contents in the packets cause backlogs in the memory 
lookup process. The effect of the TCAM width again 
has great impact—if we set w to be 128 bytes or longer, 
the AvgMax PHL size is around one per packet. This 
means that even with this “worst-case” data, the mem-
ory lookup process can still finish within one or two 
cycles after the TCAM lookup process finishes. This 
has the same effect as having the packet one or two 
bytes longer. Given the fact that packets consist of at 
least tens of bytes and we do not need to perform pat-
tern matching on the packet header, this impact of 
slightly increasing the “effective packet length” for 
matching purposes is negligible. Hence the packet scan 
rate is still 2Gbps over this set of synthesized data.  

Figure 10 illustrates the Max PHL size over all 
packets. When w is small (e.g., 16), the maximum is 
small because the max PHL size is bounded by w. 
When w gets larger, the PHL size increases and then 
drops quickly because the probability of a TCAM hit 
becomes small  for a  large w. There is a  big  difference  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

in the PHL sizes between packets containing 1 virus 
pattern and 10 patterns. However, as we increase the 
number of viruses per packets, the growth of max PHL 
size slows down. 

6.3. Results on SNORT Pattern Set 

The current version of SNORT system (v2.1.2) contains 
1991 rules, of which 1836 contain string patterns. The 
lengths of patterns are much shorter than the ClamAV 
signature set: mostly from 10 bytes to 100 bytes. In 
addition, there is a noticeable amount of short patterns 
of one or four bytes. Among the patterns, 1039 are sim-
ple patterns and 527 are correlated patterns with up to 
seven sub-patterns in one correlated pattern. 

We set the TCAM width to 128 bytes as it covers 
most of the SNORT patterns. We successfully ex-
pressed all SNORT patterns using our pattern definition 
in Section 3. For patterns containing PCRE [14], we 
converted most of them into correlated patterns. For 
those of the PCRE patterns requiring matching word 
boundary, we add all the combination of ‘\t’, ‘\n’, and   
‘ ’ before and after the pattern. After conversion, all the 
patterns can be mapped into a TCAM size of 295KB.  

Since SNORT has correlated patterns, we first 
tested the impact of different window sizes from 20 to 
200 bytes. Compared to ClamAV, the PHL size is much 
larger as is shown in Table 7. We believe this is be-
cause the SNORT signature set contains a lot of short 
patterns. In addition, the size of PHL increases when 
the window size increases because it needs to keep the 
partial hit information longer. However, as the window 
size grows larger, growth of PHL is slower.  

A large PHL is problematic since it requires many 
memory lookups and slows down the system. There-
fore, we studied the total scanning time (including 

MIT Dump  Berkeley Dump TCAM 
Width Avg AvgM

ax 
Max  Avg AvgMax Max 

4 0.042 0.27 4  0.03 0.48 4 
8 4.8e-6 5.6e-4 8  1.e-6 1.9e-5 7 

16 0 0 0  4.3e-7 5.8e-6 3 
32 0 0 0  0 0 0 

64 0 0 0  0 0 0 

128 0 0 0  0 0 0 

Table 6. PHL Size for ClamAV Signature Set.      Figure 6: Distribution of Pattern Length       Figure 7. Impact of TCAM Width  
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memory lookups) vs. the time spent on TCAM lookups 
only. We call this scan ratio. This ratio is important 
because TCAMs have a fixed access rate (e.g., 4ns) and 
generate a constant processing rate (2Gbps). Therefore, 
we can use them as bases for speed calculation. For 
example, if the scan ratio is 2, overall system scan rate 
is 2/2=1Gbps. Figure 11 plots this information. Since 
memory (e.g., SRAM) access is usually slightly faster 
than TCAM access rates, we simulated scenarios with 
different ratios of memory to TCAM access times, 
(which we call the memory ratio). For example, 1 
means memory access speed is equal to TCAM access 
speed. 0.2 denotes that memory access speed is 5 times 
the TCAM access rate. Figure 11 shows the impact of 
memory ratio on the scan ratio, with each curve stand-
ing for one memory ratio setup. Value of 1 (y axis) at 
60 percent (x axis) stands for that 60% of the packets 
have a scan ratio of 1. Simulation results show that the 
scan ratio is less than 1.2 for most of the packet (80%) 
under all settings. The TCAM access speed is the bot-
tleneck for these packets. For the remaining around 
20% of the packets, the memory access process is back-
logged and therefore the overall system performance is 
lower than the TCAM rate. Nevertheless, the max scan 
ratio is less than 2 for all setups, which means that we 
can have a pattern scan rate of at least 1Gbps.  

Table 7. PHL Size for SNORT Signature Set  
MIT Dump  Berkeley Dump Window 

Size Avg  AvgMax Max  Avg AvgMax Max 

20 0.5523 2.7683 8  0.4702 1.5765 12 

40 0.9881 3.5376 14  0.6500 1.8661 18 

60 1.3151 3.9960 14  0.7313 1.9652 23 

80 1.5491 4.2158 16  0.7587 2.0373 24 

100 1.6867 4.3485 18  0.7661 2.0740 25 

120 1.7725 4.4475 18  0.7669 2.0768 25 

140 1.8308 4.5722 19  0.7669 2.0768 25 

160 1.8800 4.6643 19  0.7669 2.0768 25 

180 1.9244 4.7386 19  0.7669 2.0768 25 

200 1.9662 4.8079 20  0.7669 2.0768 25 
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Figure 11. Effects of Memory Ratio on Scan Rate 

7. Conclusions  

With the increasing importance of network protection 
from cyber-attacks, it is essential to develop mecha-
nisms for building effective defenses against virus, 
worm, and denial of service attacks. The rapid rise in 
link bandwidths implies that network protection 
mechanisms must be capable of operating at multi-
gigabit rates. A key operation for network protection is 
pattern-matching to check for virus and worm signa-
tures.  In this paper, we developed a TCAM based 
scheme to solve the packet pattern-matching problem. 
Our proposed scheme can scan thousands of patterns 
simultaneously at gigabit rates. By evaluating its per-
formance using multiple real-network traces we showed 
that it is indeed suitable for multi-gigabit operation.  
The scheme can also be extended to achieve even 
higher rates with larger TCAMs [15]. 
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