NSF DRAFT PROPOSAL

Protecting Networks with COPS:

Making Networks More Robust by Checking, Observing, and Protecting Services

> Randy H. Katz, Scott Shenker, Ion Stoica Computer Science Division Electrical Engineering and Computer Science Department University of California, Berkeley Berkeley, CA 94720-1776

Session Goals and Objectives

- We need your thoughtful feedback!
- Present basic concepts and general work plan of our Draft NSF Proposal
- Will distribute the draft to you; due @ NSF 21 January!
 - Treat as "Berkeley Confidential" and "For Your Eyes Only"—do not distribute the draft to your colleagues without asking us first!
 - These slides are ok to share
- Please read draft over next two days: special proposal feedback session W AM 0830-1000
 - If leaving early, please email us with comments AS SOON AS POSSIBLE

Observations and Motivations

- Internet reasonably robust to point problems like link and router failures ("fail stop")
- Successfully operates under a wide range of loading conditions and over diverse technologies
- During 9/11/01, Internet worked reasonable well, under heavy traffic conditions and with some major facilities failures in Lower Manhattan

Observations and Motivations

- But ...
 - Single misconfigured border router able to bring the Internet to its knees (1997)
 - Worm outbreaks (e.g., Code Red, Nimda, Slammer) cause widespread havoc, generating BGP session resets mostly affecting the lower levels of the AS hierarchy
 - Campus IS&T tells us latest worms & file sharing apps cause traffic surges rendering campus network unmanageable due to control plane starvation (Spring/Summer 2004)
 - Berkeley EECS network loses ability to mount file systems and render other network services under suspected DNS DoS attack (December 2004)
 - No way to distinguished between "semantically" malformed traffic and that which is syntactically correct
 - Extremely hard to understand why network services fail, poor tools for post mortem analysis

Why and How Networks Fail

- Existing work focuses on loss of reachability due to routing anomalies & dynamics (e.g., convergence)
- Recent work investigates effect on *wide-area* routing infrastructure of surges caused by worm-induced and DoS traffic
 - BGP session resets a bigger problem for edge networks than peered ISPs
 - "Background radiation": random port scans/malformed traffic rapidly becoming the dominant traffic reaching end networks!
- Left unaddressed: effect of surges on critical network services, e.g., DNS, DHCP, FS mounts, network storage services, web services, etc.

Why and How Networks Fail (continued)

- Complex phenomenology of failure
- Recent Berkeley experience suggests that traffic surges also render enterprise networks unusable
- Indirect effects of DoS traffic on network infrastructure: role of unexpected traffic patterns
 - Cisco Express Forwarding: random IP addresses flood route cache forcing all traffic to go through router slow path—high CPU utilization yields inability to manage router table updates
 - Route Summarization: powerful misconfigured peer overwhelms weaker peer with too many router table entries
 - SNMP DoS attack: overwhelm SNMP ports on routers
 - DNS attack: response-response loops in DNS queries generate traffic overload

Network Trends

- Tightly managed enterprises
 - "Lock down" network with highly restricted access rules from the outside
 - Strong policies about the kind of machines that can be connected within the network
 - We are not focused on such networks
- Open enterprises
 - Require a degree of access from outside the enterprise
 - Universities, Research Laboratories, Grid computing communities, ...
 - "Virtual Corporations" collaborating on products and services
 - Balancing need for protection with openness is an essential motivation for our proposal

Technology Trends

- PNEs (aka Middleboxes)
 - Love them or hate them, they are proliferating
 - » NATs, firewalls, server load balancers, IDS, ...
 - New generation emerging that will be more programmable
 - » E.g., Bivio Networks
 - New "Data Center in a Box" architectures: processing, storage, networking in blade centers
 - Issue:
 - » Aggressively use these for deep packet inspection and actions including rewriting packet actions

OR

» Explore approaches which do not radically disturb protocol layering

COPS

Checking Observing Protecting Services

Conceptual Architecture Component 1: "Check"

- Checkable Protocols: "Fix" Internet with new protocols that maintain invariants and techniques for checking/enforcing them
 - This is hard, but we have some experience:
 - » Listen & Whisper: well-formed BGP behavior
 - » Traffic Rate Control: Self-Verifiable Core Stateless Fair Queuing (SV-CSFQ)
 - » Other examples in the proposal
 - Existing work requires changes to protocol end points or routers on the path
 - » Way forward for new protocols, but difficult to retrofit checkability to existing protocols
 - » Leveraged Building Blocks:
 - Observable protocol behavior
 - Cryptographic techniques
 - Statistical methods

Conceptual Architecture Component 2: "Protect"

- Protect Crucial Services
 - Pragmatic Goal: minimize & mitigate effects of attacks & traffic surges
 - Distinguish between good, bad, ugly (suspicious) traffic
 - » Bad evolves much faster than good, and is harder characterize
 - » Good determined by long-standing patterns and operator-tunable policies
 - Filter the bad, slow the suspicious, maintain resources for the good (e.g., control traffic)
 - » Sufficient to reduce false positives
 - » Some suspicious-looking good traffic may be slowed down, but won't be blocked

Conceptual Architecture Component 3: "Observe"

- Observation (and Action) Points
 - Points within the network where control is exercised
 - » Traffic classified
 - » Resource allocation enforced
 - Extend Internet Architecture
 - » Routers + End Hosts + Inspection-and-Action Boxes (aka iBoxes)
 - » iBoxes prototyped on commercial PNEs
 - » Placed at Internet and Server edges of enterprise net
 - Single administrative environment
 - Not a core network technology
 - » Transparently cascaded with existing routers to extend their functionality
 - Place to retrofit checkability with already deployed services and routers

iBox Placement and Functionality

13

Check

- How far can you go with Whisper-like techniques?
- Can checkability be applied in protocol domains other than congestion control and routing?
- How can we exploit iBoxes to incremently deploy checkable protocols?
- How far can you go with locally observable invariants? How to check for global properties?

Network Crash Recorder

- Record and save network activity just before a crash for later analysis
- Many issues:
 - Just how do you detect a crash?
 - » Fail stop variety are easy (e.g., router crash)
 - » What about cascaded failures induced by certain kinds of traffic patterns?
 - How do you correlate logged activity from multiple observation points across the network?
 - » Focusing on enterprise networks makes this more tractable than the full-scale Internet
 - » Some experience in terms of of tools for DHT debugging (talk tomorrow)
 - Great challenge application for iBoxes!

Constructive Approach

- Network reliability benchmarks to better understand how networks fail plus signature of impending failure
 - Network Crash Recorder based on cooperating iBoxes to snapshot recent network state preceding a network service failure
- Architectural elements for raising the semantic level of the Internet
 - Design of checkable protocols
 - » Building blocks for enabling invariant checking
 - Design of iBoxes
 - » Observation and action operations to implement protection of network services

Observe and Protect

IBM@serverBladeCenter

iBoxes implemented on commercial PNEs

- Don't: route or implement (full) protocol stacks
- Do: protect routers and shield network services
 - » Classify packets
 - » Extract flows
 - » Redirect traffic
 - » Log, count, collect stats
 - » Filter/shape traffic

Observe and Protect

- Other NEs do some of these things (e.g., Packeteer), but ...
 - iBoxes are fully programmable by us
 - » Essential element of our agenda is understanding how to structure the programming environment for PNEs to ease implementation of iBox functionality
 - Don't require 100% successful classification: degree of freedom in distinguishing between good vs. bad vs. ugly
 - Learning algorithms: potentially discover new good traffic over time
 - Directly support newly designed checkable protocols
 - Focus on *protecting* network services, not performance per se
 - » Problems we are interested in cannot be solved simply by managing bandwidth better
 - » Integrate iBoxes with rest of the COPS approach

Expected Contributions

- Design, implementation, assessment of checkable protocols
- COPS framework: Check-Observe-Protect to simultaneously enable open enterprises while also protecting their critical network resources
- Evaluation-Design-Prototyping Methodology
- If successful, Internet protocols evolve to become increasingly more checkable plus iBox functionality migrates into future generations of routers

What We are Not Doing

- Building new PNE hardware
 - Though classification boosting algorithms may be of interest to hardware designers
- Making the wide-area network more reliability
 - Though checkable protocol technology may help
- General problem of containing worms and other malware
 - Though detecting traffic surges and protecting network services against them may help