
1

NSF DRAFT PROPOSAL

Protecting Networks with COPS:
Making Networks More Robust by

Checking, Observing, and Protecting Services

Randy H. Katz, Scott Shenker, Ion Stoica

Computer Science Division

Electrical Engineering and Computer 
Science Department

University of California, Berkeley

Berkeley, CA 94720-1776



2

Session Goals and Objectives

• We need your thoughtful feedback!

• Present basic concepts and general work plan 
of our Draft NSF Proposal

• Will distribute the draft to you; due @ NSF 
21 January!
– Treat as “Berkeley Confidential” and “For Your Eyes 
Only”—do not distribute the draft to your colleagues 
without asking us first!

– These slides are ok to share

• Please read draft over next two days: special 
proposal feedback session W AM 0830-1000
– If leaving early, please email us with comments AS SOON 
AS POSSIBLE



3

Observations and Motivations

• Internet reasonably robust to point problems 
like link and router failures (“fail stop”)

• Successfully operates under a wide range of 
loading conditions and over diverse 
technologies

• During 9/11/01, Internet worked reasonable 
well, under heavy traffic conditions and with 
some major facilities failures in Lower 
Manhattan 



4

Observations and Motivations

• But … 
– Single misconfigured border router able to bring the Internet to 
its knees (1997)

– Worm outbreaks (e.g., Code Red, Nimda, Slammer) cause wide-
spread havoc, generating BGP session resets mostly affecting the
lower levels of the AS hierarchy

– Campus IS&T tells us latest worms & file sharing apps cause 
traffic surges rendering campus network unmanageable due to 
control plane starvation (Spring/Summer 2004)

– Berkeley EECS network loses ability to mount file systems and 
render other network services under suspected DNS DoS attack 
(December 2004)

– No way to distinguished between “semantically” malformed traffic
and that which is syntactically correct

– Extremely hard to understand why network services fail, poor 
tools for post mortem analysis



5

Why and How Networks Fail

• Existing work focuses on loss of reachability due 
to routing anomalies & dynamics (e.g., 
convergence)

• Recent work investigates effect on wide-area
routing infrastructure of surges caused by 
worm-induced and DoS traffic
– BGP session resets a bigger problem for edge networks than 
peered ISPs

– “Background radiation”: random port scans/malformed traffic 
rapidly becoming the dominant traffic reaching end networks!

• Left unaddressed: effect of surges on critical 
network services, e.g., DNS, DHCP, FS mounts, 
network storage services, web services, etc.



6

Why and How Networks Fail 
(continued)

• Complex phenomenology of failure

• Recent Berkeley experience suggests that traffic 
surges also render enterprise networks unusable

• Indirect effects of DoS traffic on network 
infrastructure: role of unexpected traffic patterns
– Cisco Express Forwarding: random IP addresses flood route 
cache forcing all traffic to go through router slow path—high 
CPU utilization yields inability to manage router table updates

– Route Summarization: powerful misconfigured peer overwhelms 
weaker peer with too many router table entries

– SNMP DoS attack: overwhelm SNMP ports on routers

– DNS attack: response-response loops in DNS queries generate 
traffic overload



7

Network Trends

• Tightly managed enterprises 
– “Lock down” network with highly restricted access rules 
from the outside 

– Strong policies about the kind of machines that can be 
connected within the network

– We are not focused on such networks

• Open enterprises
– Require a degree of access from outside the enterprise

– Universities, Research Laboratories, Grid computing 
communities, …

– “Virtual Corporations” collaborating on products and 
services

– Balancing need for protection with openness is an essential 
motivation for our proposal



8

Technology Trends

• PNEs (aka Middleboxes)
– Love them or hate them, they are proliferating

» NATs, firewalls, server load balancers, IDS, …

– New generation emerging that will be more programmable

» E.g., Bivio Networks

– New “Data Center in a Box” architectures: processing, 
storage, networking in blade centers

– Issue:

» Aggressively use these for deep packet inspection and 
actions including rewriting packet actions

OR

» Explore approaches which do not radically disturb 
protocol layering



9

COPS
Checking

Observing

Protecting

Services



10

Conceptual Architecture
Component 1: “Check”

• Checkable Protocols: “Fix” Internet with new 
protocols that maintain invariants and 
techniques for checking/enforcing them
– This is hard, but we have some experience: 

» Listen & Whisper: well-formed BGP behavior
» Traffic Rate Control: Self-Verifiable Core Stateless 
Fair Queuing (SV-CSFQ)

» Other examples in the proposal
– Existing work requires changes to protocol end points or 
routers on the path
» Way forward for new protocols, but difficult to 
retrofit checkability to existing protocols

» Leveraged Building Blocks: 
• Observable protocol behavior
• Cryptographic techniques
• Statistical methods



11

Conceptual Architecture
Component 2: “Protect”

• Protect Crucial Services
– Pragmatic Goal: minimize & mitigate effects of attacks & 
traffic surges

– Distinguish between good, bad, ugly (suspicious) traffic

» Bad evolves much faster than good, and is harder 
characterize

» Good determined by long-standing patterns and 
operator-tunable policies

– Filter the bad, slow the suspicious, maintain resources for 
the good (e.g., control traffic)

» Sufficient to reduce false positives

» Some suspicious-looking good traffic may be slowed 
down, but won’t be blocked



12

Conceptual Architecture
Component 3: “Observe”

• Observation (and Action) Points
– Points within the network where control is exercised

» Traffic classified

» Resource allocation enforced

– Extend Internet Architecture

» Routers + End Hosts + Inspection-and-Action Boxes
(aka iBoxes)

» iBoxes prototyped on commercial PNEs

» Placed at Internet and Server edges of enterprise net
• Single administrative environment

• Not a core network technology

» Transparently cascaded with existing routers to extend 
their functionality

• Place to retrofit checkability with already deployed services and routers



13

iBox

iBox Placement and 
Functionality

Boundary
Router

Network
Services

iBox
Internal
Router

“Open” Enterprise Network

External Traffic

Internal Traffic

Packet

PacketLabel

PacketLabel

Action: Mark
packets

Detect load and trigger action: 
Slow traffic with “external” labels



14

Check

• How far can you go with Whisper-like 
techniques?

• Can checkability be applied in protocol domains 
other than congestion control and routing?

• How can we exploit iBoxes to incremently 
deploy checkable protocols?

• How far can you go with locally observable 
invariants? How to check for global 
properties?



15

Network Crash Recorder

• Record and save network activity just before a 
crash for later analysis

• Many issues:
– Just how do you detect a crash?

» Fail stop variety are easy (e.g., router crash)

» What about cascaded failures induced by certain 
kinds of traffic patterns?

– How do you correlate logged activity from multiple 
observation points across the network? 

» Focusing on enterprise networks makes this more 
tractable than the full-scale Internet

» Some experience in terms of of tools for DHT 
debugging (talk tomorrow)

– Great challenge application for iBoxes!



16

Constructive Approach

• Network reliability benchmarks to better 
understand how networks fail plus signature of 
impending failure
– Network Crash Recorder based on cooperating iBoxes to 
snapshot recent network state preceding a network 
service failure

• Architectural elements for raising the 
semantic level of the Internet
– Design of checkable protocols

» Building blocks for enabling invariant checking

– Design of iBoxes

» Observation and action operations to implement 
protection of network services



17

Observe and Protect

iBoxes implemented on 
commercial PNEs
– Don’t: route or implement (full) 
protocol stacks

– Do: protect routers and shield 
network services

» Classify packets

» Extract flows

» Redirect traffic

» Log, count, collect stats

» Filter/shape traffic



18

Observe and Protect

• Other NEs do some of these things (e.g., Packeteer), 
but …
– iBoxes are fully programmable by us

» Essential element of our agenda is understanding how to 
structure the programming environment for PNEs to ease 
implementation of iBox functionality

– Don’t require 100% successful classification: degree of freedom in 
distinguishing between good vs. bad vs. ugly 

– Learning algorithms: potentially discover new good traffic over time
– Directly support newly designed checkable protocols
– Focus on protecting network services, not performance per se

» Problems we are interested in cannot be solved simply by 
managing bandwidth better

» Integrate iBoxes with rest of the COPS approach



19

Expected Contributions

• Design, implementation, assessment of 
checkable protocols

• COPS framework: Check-Observe-Protect to 
simultaneously enable open enterprises while 
also protecting their critical network 
resources

• Evaluation-Design-Prototyping Methodology

• If successful, Internet protocols evolve to 
become increasingly more checkable plus iBox
functionality migrates into future generations 
of routers



20

What We are Not Doing

• Building new PNE hardware
– Though classification boosting algorithms may be of 
interest to hardware designers

• Making the wide-area network more reliability
– Though checkable protocol technology may help

• General problem of containing worms and 
other malware
– Though detecting traffic surges and protecting network 
services against them may help


