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Session Goals and Objectives

• We need your thoughtful feedback!

• Present basic concepts and general work plan 
of our Draft NSF Proposal

• Will distribute the draft to you; due @ NSF 
21 January!
– Treat as “Berkeley Confidential” and “For Your Eyes 
Only”—do not distribute the draft to your colleagues 
without asking us first!

– These slides are ok to share

• Please read draft over next two days: special 
proposal feedback session W AM 0830-1000
– If leaving early, please email us with comments AS SOON 
AS POSSIBLE



3

Observations and Motivations

• Internet reasonably robust to point problems 
like link and router failures (“fail stop”)

• Successfully operates under a wide range of 
loading conditions and over diverse 
technologies

• During 9/11/01, Internet worked reasonable 
well, under heavy traffic conditions and with 
some major facilities failures in Lower 
Manhattan 
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Observations and Motivations

• But … 
– Single misconfigured border router able to bring the Internet to 
its knees (1997)

– Worm outbreaks (e.g., Code Red, Nimda, Slammer) cause wide-
spread havoc, generating BGP session resets mostly affecting the
lower levels of the AS hierarchy

– Campus IS&T tells us latest worms & file sharing apps cause 
traffic surges rendering campus network unmanageable due to 
control plane starvation (Spring/Summer 2004)

– Berkeley EECS network loses ability to mount file systems and 
render other network services under suspected DNS DoS attack 
(December 2004)

– No way to distinguished between “semantically” malformed traffic
and that which is syntactically correct

– Extremely hard to understand why network services fail, poor 
tools for post mortem analysis
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Why and How Networks Fail

• Existing work focuses on loss of reachability due 
to routing anomalies & dynamics (e.g., 
convergence)

• Recent work investigates effect on wide-area
routing infrastructure of surges caused by 
worm-induced and DoS traffic
– BGP session resets a bigger problem for edge networks than 
peered ISPs

– “Background radiation”: random port scans/malformed traffic 
rapidly becoming the dominant traffic reaching end networks!

• Left unaddressed: effect of surges on critical 
network services, e.g., DNS, DHCP, FS mounts, 
network storage services, web services, etc.
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Why and How Networks Fail 
(continued)

• Complex phenomenology of failure

• Recent Berkeley experience suggests that traffic 
surges also render enterprise networks unusable

• Indirect effects of DoS traffic on network 
infrastructure: role of unexpected traffic patterns
– Cisco Express Forwarding: random IP addresses flood route 
cache forcing all traffic to go through router slow path—high 
CPU utilization yields inability to manage router table updates

– Route Summarization: powerful misconfigured peer overwhelms 
weaker peer with too many router table entries

– SNMP DoS attack: overwhelm SNMP ports on routers

– DNS attack: response-response loops in DNS queries generate 
traffic overload
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Network Trends

• Tightly managed enterprises 
– “Lock down” network with highly restricted access rules 
from the outside 

– Strong policies about the kind of machines that can be 
connected within the network

– We are not focused on such networks

• Open enterprises
– Require a degree of access from outside the enterprise

– Universities, Research Laboratories, Grid computing 
communities, …

– “Virtual Corporations” collaborating on products and 
services

– Balancing need for protection with openness is an essential 
motivation for our proposal
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Technology Trends

• PNEs (aka Middleboxes)
– Love them or hate them, they are proliferating

» NATs, firewalls, server load balancers, IDS, …

– New generation emerging that will be more programmable

» E.g., Bivio Networks

– New “Data Center in a Box” architectures: processing, 
storage, networking in blade centers

– Issue:

» Aggressively use these for deep packet inspection and 
actions including rewriting packet actions

OR

» Explore approaches which do not radically disturb 
protocol layering
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COPS
Checking

Observing

Protecting

Services
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Conceptual Architecture
Component 1: “Check”

• Checkable Protocols: “Fix” Internet with new 
protocols that maintain invariants and 
techniques for checking/enforcing them
– This is hard, but we have some experience: 

» Listen & Whisper: well-formed BGP behavior
» Traffic Rate Control: Self-Verifiable Core Stateless 
Fair Queuing (SV-CSFQ)

» Other examples in the proposal
– Existing work requires changes to protocol end points or 
routers on the path
» Way forward for new protocols, but difficult to 
retrofit checkability to existing protocols

» Leveraged Building Blocks: 
• Observable protocol behavior
• Cryptographic techniques
• Statistical methods
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Conceptual Architecture
Component 2: “Protect”

• Protect Crucial Services
– Pragmatic Goal: minimize & mitigate effects of attacks & 
traffic surges

– Distinguish between good, bad, ugly (suspicious) traffic

» Bad evolves much faster than good, and is harder 
characterize

» Good determined by long-standing patterns and 
operator-tunable policies

– Filter the bad, slow the suspicious, maintain resources for 
the good (e.g., control traffic)

» Sufficient to reduce false positives

» Some suspicious-looking good traffic may be slowed 
down, but won’t be blocked
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Conceptual Architecture
Component 3: “Observe”

• Observation (and Action) Points
– Points within the network where control is exercised

» Traffic classified

» Resource allocation enforced

– Extend Internet Architecture

» Routers + End Hosts + Inspection-and-Action Boxes
(aka iBoxes)

» iBoxes prototyped on commercial PNEs

» Placed at Internet and Server edges of enterprise net
• Single administrative environment

• Not a core network technology

» Transparently cascaded with existing routers to extend 
their functionality

• Place to retrofit checkability with already deployed services and routers
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iBox

iBox Placement and 
Functionality
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Router
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PacketLabel

PacketLabel

Action: Mark
packets

Detect load and trigger action: 
Slow traffic with “external” labels
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Check

• How far can you go with Whisper-like 
techniques?

• Can checkability be applied in protocol domains 
other than congestion control and routing?

• How can we exploit iBoxes to incremently 
deploy checkable protocols?

• How far can you go with locally observable 
invariants? How to check for global 
properties?



15

Network Crash Recorder

• Record and save network activity just before a 
crash for later analysis

• Many issues:
– Just how do you detect a crash?

» Fail stop variety are easy (e.g., router crash)

» What about cascaded failures induced by certain 
kinds of traffic patterns?

– How do you correlate logged activity from multiple 
observation points across the network? 

» Focusing on enterprise networks makes this more 
tractable than the full-scale Internet

» Some experience in terms of of tools for DHT 
debugging (talk tomorrow)

– Great challenge application for iBoxes!
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Constructive Approach

• Network reliability benchmarks to better 
understand how networks fail plus signature of 
impending failure
– Network Crash Recorder based on cooperating iBoxes to 
snapshot recent network state preceding a network 
service failure

• Architectural elements for raising the 
semantic level of the Internet
– Design of checkable protocols

» Building blocks for enabling invariant checking

– Design of iBoxes

» Observation and action operations to implement 
protection of network services



17

Observe and Protect

iBoxes implemented on 
commercial PNEs
– Don’t: route or implement (full) 
protocol stacks

– Do: protect routers and shield 
network services

» Classify packets

» Extract flows

» Redirect traffic

» Log, count, collect stats

» Filter/shape traffic
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Observe and Protect

• Other NEs do some of these things (e.g., Packeteer), 
but …
– iBoxes are fully programmable by us

» Essential element of our agenda is understanding how to 
structure the programming environment for PNEs to ease 
implementation of iBox functionality

– Don’t require 100% successful classification: degree of freedom in 
distinguishing between good vs. bad vs. ugly 

– Learning algorithms: potentially discover new good traffic over time
– Directly support newly designed checkable protocols
– Focus on protecting network services, not performance per se

» Problems we are interested in cannot be solved simply by 
managing bandwidth better

» Integrate iBoxes with rest of the COPS approach
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Expected Contributions

• Design, implementation, assessment of 
checkable protocols

• COPS framework: Check-Observe-Protect to 
simultaneously enable open enterprises while 
also protecting their critical network 
resources

• Evaluation-Design-Prototyping Methodology

• If successful, Internet protocols evolve to 
become increasingly more checkable plus iBox
functionality migrates into future generations 
of routers
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What We are Not Doing

• Building new PNE hardware
– Though classification boosting algorithms may be of 
interest to hardware designers

• Making the wide-area network more reliability
– Though checkable protocol technology may help

• General problem of containing worms and 
other malware
– Though detecting traffic surges and protecting network 
services against them may help


