
Automatic Classification of
Requests to a 3-tier system

using SLT
George Porter
Winter retreat
2005

Motivation:
What is a 3 tier system?

 Composable building blocks to build web services
 Web containers, various app/ejb containers, persistent state via

automatically managed DB pools
 Problem: Open control loop/requests driven by users

 Unusual requests, flash traffic, increased workload can
overload components of the web service

 Hard to provision; hard to make performance guarantees; this
leads to seemingly broken behavior to the end user

WEB APP DB

Increasing load leads to
perceived broken behavior

Requests per second vs # clients

0

50

100

150

200

250

10
0
20
0
30
0
40
0
50
0
60
0
70
0
80
0
90
0
10
00
11
00
12
00
13
00
14
00
15
00

Number of clients

A
v
e
ra

g
e
 r

e
q

u
e
st

s
p

e
r

se
co

n
d System

in overload
state…

…this leads
to the
following
problem:

Results taken from RUBiS running on Emulab

Requests per second vs # clients

0

50

100

150

200

250

10
0
20
0
30
0
40
0
50
0
60
0
70
0
80
0
90
0
10
00
11
00
12
00
13
00
14
00
15
00

Number of clients

A
v
e
ra

g
e
 r

e
q

u
e
st

s
p

e
r

se
co

n
d

Behavior at low
load

Requests per second vs # clients

0

50

100

150

200

250

10
0
20
0
30
0
40
0
50
0
60
0
70
0
80
0
90
0
10
00
11
00
12
00
13
00
14
00
15
00

Number of clients

A
v
e
ra

g
e
 r

e
q

u
e
st

s
p

e
r

se
co

n
d

Behavior at high
load

For users, the
system seems
defective in many
cases

Attempts at apply CT to 3 tier
systems
 Most relevant: ControlWare

 Zhang, Lu, et al. - Univ of Virginia
 Middleware system for mapping QoS goals into CT loops by

controlling allocation of threads to sockets, cache space to
buffers, etc. (opaque requests)

 But, all requests treated as the same -- homogeneous
view

• This punishes “light” requests just as much as complex, CPU-
intensive tasks

IDEA: Use SLT to classify
requests based on their effect
 Analysis: group requests into

 Those that affect the bottleneck
 Those that don’t

 …using the technique of linear regression
 Classify requests based on correlations to DB CPU utilization

(the bottleneck in my system)
 Find candidate list of requests that are correlated with

bottleneck
 (in progress) separate these requests into a

separate, bandwidth-shaped path
 Assumption: reduce avg service time by

delaying “elephant flows”

/dbLookup.php

SLOW
DOWN

Role for iBoxes

SLOW
DOWN

/storeBid.php

/lightRequest.php

/lightRequest.php

No
Network
Visibility

HTTP
Header
Visibility

S
e
r
v
e
r
s

S
e
r
v
e
r
s

Observe: web requests

 From Web server’s Apache logs:

t0  t1
t1  t2
t2  t3
t3  t4
t4  t5

ur
l 1

ur
l 2

ur
l 3

ur
l 4

ur
l 5

Number of
active

requests per
class still

being
processed

10.1.1.2 20296 + 1377 1102213360 0 /PHP/RUBiS_logo.jpg
10.1.1.2 1393 + 1375 1102213360 0 /PHP/SearchItemsByCategory.php
10.1.1.2 3736 + 1390 1102213360 0 /PHP/BrowseCategories.php

Request duration

Observe:
servers
 Utilized sysstat
 Collected for web, db:

 CPU idle, system, user,
busy

 Network traffic between
tiers

 Context switches
 Disk I/O operations

 This work focuses on DB
CPU, which in my
deployment was the
bottleneck

Analyze
 Linear regression

 “Black box approach”
 No modification of O/S or apps
 Minimal interference (capture Apache logs, use the sysstat

system utility)
 No need to tag requests, match requests with effect, or match

observations at the web server with observations at the DB
server

 Additive, linear model
 At high level, load on CPU is the sum of work given to it
 Smaller order effects like CPU scheduling, caching, paging,

disk arm activity, etc., important, but not in my model
 For the model, it is only important that these effects are

not correlated to the class of request

New “Act” Opportunity: iBoxes
 Deep packet inspection

of HTTP headers per
flow
 Nortel 2-7 switch

 Per-flow/per-vlan
bandwidth shaping
 Packeteer PacketShaper

 Currently this work only
classifies requests,
although integration with
the above PNEs is in
progress in our
BladeCenter

.2
2
0

169.229.62/24

.2
2
1

.2
2
2

.2
2
3

.2
2
4

.2
2
5

.2
2
6

.2
2
7

.2
2
8

.2
2
9

.2
3
0

.2
3
1

.2
3
2

.2
3
3

169.229.62.219

Netrads-cm

SP SP SP SP SP SP SP SP SP SP SP SP SP SP

RS-485 (2.5MB/s)

Control

module

Nortel Switch

x14

x4 External ports

x2 mgmt ports (100 Mb/s)

14 addt’l internal ports

169.229.62.218

Summary: Observe/Analyze/Act
Framework
 Observe

 Apache web logs / Systems measurements
 HTTP headers in requests

 Analyze
 Offline (periodic) linear regression
 Output: subset of URLs positively correlated to

bottleneck
 Act (in-progress)

 Use Nortel switch to segregate correlated requests
into their own VLAN

 Use Packeteer box to throttle that VLAN

Experimental setup
 Emulab testbed

 Reconfigurable
interconnect, linux-based
platform, Utah

 RUBiS (Rice Univ.
Bidding System)
 eBay like workload,

transition matrix driven
 Default matrix, 7 sec

 5 clients
 Apache + PHP app
 MySQL DB server

Clients

DB

Apache+PHP

Results of regression
Effect of Requests on Database CPU

(Restricted Model)

0

0.5

1

1.5

2

2.5

100 200 300 400

clients

R
e
g

re
ss

io
n

 C
o

e
ff

ic
ie

n
t

SearchItemsByCategory.php SearchItemsByRegion.php

Only statistically significant coefficients shown

Unexpected Results
 Even the simple RUBiS system has numerous

request types
 I assumed a priori that several of the requests would

be correlated, but weren’t
 Real systems have many, many more request

pathways
 Given a list of 40 URLs, which are correlated to

load?
 Experimentally we found a more narrow set of

candidate URLs than expected

Read-write workload
(transition_7.txt)

/PHP/RUBiS_logo.jpg
 /PHP/SearchItemsByCategory.php
 /PHP/index.html
 /PHP/BrowseCategories.php
 /PHP/browse.html
 /PHP/SearchItemsByRegion.php
 /PHP/BrowseRegions.php
 /PHP/about_me.html
 /PHP/AboutMe.php
 /PHP/bid_now.jpg
 /PHP/RegisterUser.php
 /PHP/register.html

(70,851 requests total)

/PHP/ViewItem.php
 /PHP/sell.html
 /PHP/PutBidAuth.php
 /PHP/PutBid.php
 /PHP/ViewUserInfo.php
 /PHP/BuyNow.php
 /PHP/BuyNowAuth.php
 /PHP/ViewBidHistory.php
 /PHP/PutComment.php
 /PHP/SellItemForm.php
 /PHP/RegisterItem.php
 /PHP/StoreComment.php
 /PHP/StoreBid.php

Review
 SLT was able to classify requests to a web service based on their

effect on the system
 Linear regression techniques:

 Were able to discover statistically significant, positively correlated
relationships between search URLs and load on the DB server

 Avoid the need to modify the system
 Don’t require matching observations at the web server with

observations at the db
 Better QoS by throttling back requests

 Correlations discovered by SLT narrow down the list of URLs to
throttle

 This throttling places the most delay on those users causing the most
load, while not throttling other users

 (work in progress)
 Leads to perceived higher reliability

Questions?
 Thanks to Alice Zheng and Gert Lanckriet
 Thanks to the Emulab group

Backup Slides

Control theory implications
 We have candidate list of requests to pass

through Packeteer PNE for throttling
 Our choice is inherently monotonic

 Throttling requests of any type will reduce load on
the system

 First reduce URLs with pos correlation, then, if
necessary, other URLs

 Several options for throttling choice:
 URL with highest correlation
 Dial for those URLs with pos. correlations
 Implemented with SLB groups on a load balancer

Analyse: The model
 Model:

 Y = ßx + ε
 Y is MxN
 X is NxC

 Result:
 ßHat is then MxC

 OLS:
 Yhat = X*ßHat
 e = Yhat - Y
 RSS = ΣI ei
ν SE = sqrt(RSS)

 Variables
 N: number of time

epochs (output
variable
measurements)

 M: # output variables
 C: # of classes (# urls)

Stepwise regression
 Find covariate with highest correlation to

Y, and add if p-value < 0.05
 Continue adding variables to the model until

all remaining covariates have p-value >=
0.05

 The result is a linear equation containing
only stat. significant terms

Stepwise regression example
Initial columns included: none
Step 1, added column 3, p=0
Step 2, added column 8, p=0
Step 3, added column 12, p=3.52833e-05
Step 4, added column 4, p=0.00339175
Step 5, added column 5, p=0.0122998
Final columns included: 3 4 5 8 12

ans =

 'Coeff' 'Std.Err.' 'Status' 'P'
 [1.2259e+10] [7.9807e+12] 'Out' [0.9988]
 [-0.3189] [0.1721] 'Out' [0.0640]
 [0.3076] [0.0853] 'In' [3.1994e-04]
 [-0.5781] [0.1608] 'In' [3.3473e-04]
 [-0.3890] [0.1552] 'In' [0.0123]
 [0.3193] [0.3989] 'Out' [0.4236]
 [-0.2388] [0.2567] 'Out' [0.3525]
 [1.8627] [0.1295] 'In' [0]
 [-0.3436] [0.3851] 'Out' [0.3723]
 [-0.3088] [0.3018] 'Out' [0.3064]
 [-0.3817] [0.2984] 'Out' [0.2011]
 [0.5235] [0.1893] 'In' [0.0057]
 [-0.8143] [0.4918] 'Out' [0.0980]

Results (con’t)
 Experiments with 100 to 1500 clients

 But at 500 the DB server became the
bottleneck

 Strong positive correlations with
searching urls

References
 [1] R. Zhang, C. Lu, T. Abdelzaher, J. Stankovic. ControlWare: A Middleware

Architecture for Feedback Control of Software Performance. In Proceedings of the
2002 International Conference on Distributed Computing Systems, Vienna, Austria,
July 2002.

 [2] A. Goel, D. Steere, C. Pu, and J. Walpole. Swift: A feedback control and dynamic
reconfiguration toolkit. Technical Report CSE-98-009, Oregon Graduate Institute,
Portland, OR, June 1998.

 [3] E. Cecchet, A. Chanda, S. Elnikety, J. Marguerite and W. Zwaenepoel.
Performance Comparison of Middlware Architectures for Generating Dynamic Web
Content. 4th ACM/IFIP/USENIX International Middleware Conference. Rio de
Janeiro, Brazil, June 16-20, 2003.

 [4] E. Cecchet, J. Marguerite and W. Zwaenepoel. Performance and scalability of
EJB applications. 17th ACM Conference on Object-oriented Programming, Systems,
Languages and Applications (OOpsla 2002), Seattle, WA. Nov 4-8, 2002.

 [5] C. Amza, E. Cecchet, A. Chanda, A. Cox, S. Elnikety, R. Gil, J. Marguerite.
Specification and Implementation of Dynamic Web Site Benchmarks IEEE 5th
Annual Workshop on Workload Characterization (WWC-5). Austin, TX. Nov 2002.

Default_7.txt Workload
Categories

59512 /PHP/RUBiS_logo.jpg
13060 /PHP/SearchItemsByCategory.php
12934 /PHP/index.html
10233 /PHP/BrowseCategories.php
9761 /PHP/browse.html
5469 /PHP/SearchItemsByRegion.php
2857 /PHP/BrowseRegions.php
2102 /PHP/about_me.html
2057 /PHP/AboutMe.php
1209 /PHP/register.html
1207 /PHP/RegisterUser.php
 675 /PHP/sell.html
 3 /PHP/ViewUserInfo.php

Request distribution for 1400
clients

