
Observe-Analyze-Act Paradigm for
Storage System Resource Arbitration

Li Yin1
Email: yinli@eecs.berkeley.edu

Joint work with: Sandeep Uttamchandani2

Guillermo Alvarez2

John Palmer2

Randy Katz1

1:University of California, Berkeley
2: IBM Almaden Research Center

Outline

� Observe-analyze-act in storage system: CHAMELEON�Motivation� System model and architecture � Design details� Experimental results

� Observe-analyze-act in other scenarios� Example: network applications

� Future challenges

Need for Run-time System Management

� Static resource allocation is not enough� Incomplete information of the access characteristics: workload
variations; change of goals� Exception scenarios: hardware failures; load surges.

E-mail

Application
Data Warehousing

Web-server

Application

Storage Virtualization(Mapping Application-data to Storage Resources) SLA Goals

Approaches for Run-time Storage System
Management

� Today: Administrator observe-analyze-act
� Automate the observe-analyze-act: � Rule-based system� Complexity� Brittleness� Pure feedback-based system� Infeasible for real-world multi-parameter tuning�Model-based approaches� Challenges:

• How to represent system details as models?
• How to create/evolve models?
• How to use models for decision making?

System Model for Resource Arbitration

� Input:� SLAs for workloads� Current system status (performance)� Output:� Resource reallocation action (Throttling decisions)

Host 1 Host 2 Host n

Interconnection
Fabric Switch 1

controller

QoS Decision
Module

Throttling
Points

Interconnection
Fabric Switch m

controller controller

Our Solution: CHAMELEON

Observe

Throttling Value

Incremental Throttling
Step Size

Feedback

Managed
SystemCurrent

States

Current
States

Retrigger Designer-
defined
PoliciesComponent

Models

Workload
Models

Action
Models

Knowledge
Base

Piece-wise
Linear

Programming

Reasoning
Engine

Throttling
Executor

Analyze Act

Models

Knowledge Base: Component Model

�Objective: Predict service time for a given load at a
component (For example: storage controller).

Service_timecontroller = L(request size, read write ratio, random sequential
ratio, request rate)

�An example of component model� FAStT900, 30 disks, RAID0 � Request Size 10KB, Read/Write Ratio 0.8, Random Access

Controller Model

0

5

10

15

20

25

0 500 1000 1500 2000 2500 3000 3500

Requests/Second

A
ve

ra
g

e
R

es
p

o
n

ce
 T

im
e

(m
s)

Component Model (cont.)�Quadratic Fit�S = 3.284, r = 0.838�Linear Fit�S = 3.8268, r = 0.739�Non-saturated case: Linear Fit�S = 0.0509, r = 0.989

Knowledge Base: Workload Model

� Objective: Predict the load on component i as a function
of the request rate j

� Example: � Workload with 20KB request size,
0.642 read/write ratio and 0.026 sequential access ratio

Component_loadi,j= Wi,j(workload j request rate)

Knowledge Base: Action Model

� Objective: Predict the effect of corrective actions on
workload requirements

� Example:

Workload J request Rate = Aj(Token Issue Rate for Workload J)

Analyze Module: Reasoning Engine
�Formulated as a constraint solving problem�Part 1: Predict Action Behavior:

For each candidate throttling decision, predict its performance
result based on knowledge base�Part 2: Constraint Solving:

Use linear programming technique to scan all feasible solutions
and choose the optimal one

Reasoning Engine: Predict Result� Chain all models together to predict action result� Input: Token issue rate for each workloads � Output: Expected latency

latency

load

W
or

kl
oa

d
R

eq
ue

st
 R

at
e

Token Issue
Rate

Action Model

C
om

po
ne

nt
Lo

ad
Workload

Request Rate

Workload Model

Workload 1

Workload n
Component Model

Reasoning Engine: Constraint Solving

� Formulated using Linear Programming
� Formulation:� Variable: Token issue rate for each

workload� Objective Function: � Minimize number of workloads violating their
SLA goals�Workloads are as close to their SLA IO rate
as possible� Example: � Constraints:�Workloads should meet their SLA latency
goals

FAILED EXCEED

LUCKYMEET

0 1

1

IOps(%)

La
te

nc
y(

%
)

where pai= Workload priority pbi = Quadrant priority

SLAi

Minimize ∑paipbi[SLAi – T(current_throughputi, ti)]

Act Module: Throttling Executor

� Hybrid of feedback
and prediction
� Ability to switch to

rule-based (policies)
when confidence
value is low
� Ability to re-trigger

reasoning engine

Reasoning
Engine Invoked

Confidence
Value <

Threshold

Analyze System
States

Continue
Throttling

Re-trigger
Reasoning
Engine

Execute
Designer
Policies

Yes

Execute Reasoning
Engine Output with
Step-wise Throttling
Proportional to
Confidence Value

No

Experimental Results

� Test-bed configuration:� IBM x-series 440 server (2.4GHz 4-way with 4GB memory,
redhat server 2.1 kernel)� FAStT 900 controller � 24 drives (RAID0)� 2Gbps FibreChannel Link

� Tests consist of:� Synthetic workloads� Real-world trace replay (HP traces and SPC traces)

Experimental Results: Synthetic Workloads� Effect of priority values on the output of constraint solver

� Effect of model errors on output of the constraint solver

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2

La
te

nc
y(

%
)

IOps(%)(t1=0,t2=0,t3=33.87%,t4=29.17%)

w1

w2

w3

w4

 0

 0.5

 1

 1.5

 2

 0
La

te
nc

y(
%

)

IOps(%)(t1=0,t2=0,t3=65.98%,t4=10.02%)

w1

w2

w3

w4

0

0.5

1

1.5

2

0 0.5 1 1.5 2

La
te

nc
y(

%
)

IOps(%)(t1=0,t2=64.18%,t3=33.86%,t4=10.01%)

w1

w2
w3

w4

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2

La
te

nc
y(

%
)

IOps(%)(t1=0,t2=0,t3=33.87%,t4=29.17%)

w1

w2

w3

w4

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2

La
te

nc
y(

%
)

IOps(%)(t1=0,t2=0,t3=16.93%,t4=14.58%)

w1

w2
w3

w4

(a) Equal priority (b) Workload priorities (c) Quadrant priorities

(a) Without feedback (b) with feedback

Experiment Result: Real-world Trace Replay

� Real-world block-level traces from HP (cello96 trace)
and SPC (web server)
� A phased synthetic workload acts as the third flow
� Test goals:� Do they converge to SLAs?� How reactive the system is?� How does CHAMELEON handle unpredictable variations?

Real-world Trace Replay� Without CHAMELEON: � With throttling

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30 35 40 45 50

IO
PS

time (minute)

Cello96
SPC
SYN

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35 40 45 50

la
te

nc
y

(m
s)

time (minute)

Cello96
Cello SLA

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35 40 45 50

la
te

nc
y

(m
s)

time (minute)

SPC
SPC SLA

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40 45 50

la
te

nc
y

(m
s)

time (minute)

SYN
SYN SLA

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30 35 40 45 50

IO
PS

time (minute)

Cello96
SPC
SYN

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35 40 45

la
te

nc
y

(m
s)

time (minute)

Cello96
Cello SLA

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30 35 40 45

la
te

nc
y

(m
s)

time (minute)

SPC
SPC SLA

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35 40 45

la
te

nc
y

(m
s)

time (minute)

SYN
SYN SLA

Real-world Trace Replay� With periodic un-throttling � Handling system changes

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5 10 15 20 25 30 35 40 45 50

IO
PS

time (minute)

Cello96
SPC
SYN

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0 5 10 15 20 25 30 35 40 45 50

la
te

nc
y

time (minute)

Cello96
Cello96 SLA

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 5 10 15 20 25 30 35 40 45 50

la
te

nc
y

time (minute)

SPC
SPC SLA

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 5 10 15 20 25 30 35 40 45 50

la
te

nc
y

time (minute)

SYN
SYN SLA

 0

 500

 1000

 1500

 2000

 2500

 5 10 15 20

IO
PS

time (minute)

Cello96
SPC
SYN

 0
 1
 2
 3
 4
 5
 6
 7
 8

 5 10 15 20

la
te

nc
y

(m
s)

time (minute)

Cello96
Cello96 SLA

 0

 2

 4

 6

 8

 10

 5 10 15 20

la
te

nc
y

(m
s)

time (minute)

SPC
SPC SLA

 3
 4
 5
 6
 7
 8
 9

 10
 11

 5 10 15 20

la
te

nc
y

(m
s)

time (minute)

SYN
SYN SLA

Other system management scenarios?

� Automate the observe-analyze-act loop for other self-
management scenarios
� Example: CHAMELEON for network applications� Example: A proxy in front of server farm

1: monitor
network/server
behaviors2: establish/

maintain models
for system
behaviors3: Analyze and

make action
decision

4: Execute or
Distribute action
decision to
execution points

Future Work

� Better methods to improve model accuracy
� More general constraint solver
� Combining with other actions
� CHAMELEON in other scenarios
� CHAMELEON for reliability and failure

References� L. Yin, S. Uttamchandani, J. Palmer, R. Katz, G. Agha, “AUTOLOOP:
Automated Action Selection in the ``Observe-Analyze-Act’’ Loop for Storage
Systems”, submitted for publication, 2005� S. Uttamchandani, L. Yin, G. Alvarez, J. Palmer, G. Agha, “CHAMELEON: a
self-evovling, fully-adaptive resource arbitrator for storage systems”, to
appear in USENIX Annual Technical Conference (USENIX’05), 2005� S. Uttamchandani, K. Voruganti, S. Srinivasan, J. Palmer , D. Pease,
“Polus: Growing Storage QoS Management beyond a 4-year old kid”, 3rd

USENIX Conference on File and Storage Technologies (FAST’04), 2004

Questions?

Email: yinli@eecs.berkeley.edu

