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� Future challenges



Need for Run-time System Management

� Static resource allocation is not enough� Incomplete information of the access characteristics: workload 
variations; change of goals� Exception scenarios: hardware failures; load surges.
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Approaches for Run-time Storage System 
Management

� Today: Administrator observe-analyze-act
� Automate the observe-analyze-act: � Rule-based system� Complexity� Brittleness� Pure feedback-based system� Infeasible for real-world multi-parameter tuning�Model-based approaches� Challenges:

• How to represent system details as models?
• How to create/evolve models?
• How to use models for decision making?



System Model for Resource Arbitration

� Input:� SLAs for workloads� Current system status (performance)� Output:� Resource reallocation action (Throttling decisions)
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Our Solution: CHAMELEON
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Knowledge Base: Component Model

�Objective: Predict service time for a given load at a 
component (For example: storage controller).

Service_timecontroller = L( request size, read write ratio, random sequential 
ratio, request rate)

�An example of component model� FAStT900, 30 disks, RAID0 � Request Size 10KB, Read/Write Ratio 0.8, Random Access
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Component Model (cont.)�Quadratic Fit�S = 3.284, r = 0.838�Linear Fit�S = 3.8268, r = 0.739�Non-saturated case: Linear Fit�S = 0.0509, r = 0.989



Knowledge Base: Workload Model

� Objective: Predict the load on component i as a function 
of the request rate j

� Example: � Workload with 20KB request size, 
0.642 read/write ratio and 0.026 sequential access ratio

Component_loadi,j= Wi,j( workload j request rate)



Knowledge Base: Action Model

� Objective: Predict the effect of corrective actions on 
workload requirements

� Example:

Workload J request Rate = Aj(Token Issue Rate for Workload J)



Analyze Module: Reasoning Engine
�Formulated as a constraint solving problem�Part 1: Predict Action Behavior: 

For each candidate throttling decision, predict its performance 
result based on knowledge base�Part 2: Constraint Solving: 

Use linear programming technique to scan all feasible solutions 
and choose the optimal one



Reasoning Engine: Predict Result� Chain all models together to predict action result� Input: Token issue rate for each workloads � Output: Expected latency 
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Reasoning Engine: Constraint Solving

� Formulated using Linear Programming
� Formulation:� Variable: Token issue rate for each 

workload� Objective Function: � Minimize number of workloads violating their 
SLA goals�Workloads are as close to their SLA IO rate 
as possible� Example: � Constraints:�Workloads should meet their SLA latency 
goals
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Act Module: Throttling Executor

� Hybrid of feedback 
and prediction
� Ability to switch to 

rule-based (policies) 
when confidence 
value is low
� Ability to re-trigger 

reasoning engine
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Experimental Results

� Test-bed configuration:� IBM x-series 440 server (2.4GHz 4-way with 4GB memory, 
redhat server 2.1 kernel)� FAStT 900 controller � 24 drives (RAID0)� 2Gbps FibreChannel Link

� Tests consist of:� Synthetic workloads� Real-world trace replay (HP traces and SPC traces)



Experimental Results: Synthetic Workloads� Effect of priority values on the output of constraint solver

� Effect of model errors on output of the constraint solver
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Experiment Result: Real-world Trace Replay

� Real-world block-level traces from HP (cello96 trace) 
and SPC (web server)
� A phased synthetic workload acts as the third flow
� Test goals:� Do they converge to SLAs?� How reactive the system is?� How does CHAMELEON handle unpredictable variations?



Real-world Trace Replay� Without CHAMELEON: � With throttling
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Real-world Trace Replay� With periodic un-throttling � Handling system changes
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Other system management scenarios?

� Automate the observe-analyze-act loop for other self-
management scenarios
� Example: CHAMELEON for network applications� Example:  A proxy in front of server farm

1: monitor 
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behaviors2: establish/

maintain models
for system 
behaviors3: Analyze and 

make action
decision

4: Execute or
Distribute action
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Future Work

� Better methods to improve model accuracy
� More general constraint solver
� Combining with other actions
� CHAMELEON in other scenarios
� CHAMELEON for reliability and failure
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Questions?

Email: yinli@eecs.berkeley.edu


