Towards More Adaptive Internet

Routing

Mukund Seshadri
(mukunds@cs.berkeley.edu)

Prof. Randy Katz

Motivation — Inter-domain Routing

Inter-domain routing failures often last several minutes
[Labovitz et al.]

= Slow BGP convergence
= Can take up to 15 min to recover

Reachability failures can often be circumvented by using
alternate routes

E.g. 12-Node RON recovered from 32 outages over 64hrs, Mar'01
m [Feamster03] estimates recovery from 50% of failures.
m Overlays were used — small-scale solution only.

Can we modify inter-domain routing to make alternate
routes available (when present)?

Motivation — Intracdomain Routing

Typically link weights (OSPF) set to achieve desired
utilizations (for known traffic matrix)

= Can Performance be a problem?

[Sprint02] reported that at any given time, some link in the network
was likely to be “over-loaded” (>50% utilization).

Cannot adapt to changes in traffic load
= Currently addressed by heavy over-provisioning

If such over-povisioning is not affordable: can we
automatically adapt to significant changes in the load?

* Part 1- Inter-domain Routing

= Goal — improve inter-domain reachability by using
existing redundancy in the AS graph.

= Network-layer approach -

= Provide alternate routes via an extension to the (BGP) path vector
protocol

= Evolutionary/Overlay approach (last retreat)

= Improve scalability using using topology information (about route
diversity).

Path Vector Background

Each node A advertises to each neighbour B: the cost of A's
shortest route to each destination (prefix), and the list of
nodes (ASes) on that route.

= B selects the shortest of all the routes to a particular destination that
received from its neighbours, after adding the cost of the link
between B and its neighbour

Prior work has designed protocols for maximally disjoint
multi-path distance vector protocols [1189]

= However, all possible paths are explored => unnecessarily high
overhead

= Does not use path vector information => complex and slow.

Our Network Layer Approach

. Extend BGP's path vector protocol to advertise k& (~2) routes
per destination instead of 1.
m Factor k increase in advertisement overhead

. First of the k routes is computed using the current BGP
route-selection.
. The remaining k-1 routes are selected to be maximally link-
disjoint (at the AS-level).
s Sequential greedy selection of routes

m Heuristic to reduce probability that a change to the default route will
be accompanied by a change to the alternate routes

s Assumes random single-link failure.

ﬁ Service Model

. How will the use of the alternate routes be triggered?

s Network node can automatically switch when the default
route changes;
« ..until the default routing entry stabilizes
» ..not a complete solution
= ..combine with BGP-RCN?

= Best way to validate a routing entry is to send and receive
packets via that route

. End-hosts already do this — can indicate reachability failures via a
flag in the packet-header.

. Flag essential for loop-avoidance.

Results

Construct AS-level topologies
and default paths from BGP
Routeviews data.

m Inaccuracies due to symmetry
assumption and hidden edges

s ~500 nodes, 100 src/dest.

Construct routing tables using
k-path vector.

Find reachability/failure
probability of all destinations
for a given node (under
random single link failure)

Failure Probabillities

0.9

0.8 —
0.7

0.6 —

Failure Probability

0.5

0.4

0.3
E 02

alized

Nor
o
=

1 2 3 4 5

K (Ad.s per destination)

 Just using k=2 greatly
Improves reachability

Part 2 — Intra-domain Routing

« Goal: load-sensitive dynamic routing —

s Assumptions:

« traffic changes faster than traffic engr.'s timescales (~10'sof
minutes-hours).

« Heavy overprovisioning (2x) is not feasible.

» Packet-switching, no reservation-based models
« Does not change the interface to end-hosts or other networks

m Jssues:
» Stability can be hampered by herd behaviour and use of
stale information

= Load-balancing
= One route per destination (currently used) makes this harder

Background

Typical intra-domain protocol: link-state, e.g. OSPF

m Current state/cost of each adjacent link is reported by each node to
all other nodes

= A shortest-path algo. (Dijkstra) is then used by each node to
compute one route per destination.
Using a load-based metric (like delay) directly can be
unstable [Khanna89, Srihari99]

= [Khanna89] proposes a metric that resembles delay-based at low
utilization and capacity based at high utilization.

. Still can see oscillations, doesn't balance load (related work:
[Wang92]).
. Network/Diameter-dependent metric-setting

ﬁ Points of Attack

= Granularity of Routing Unit
» Currently one route per destination

= Route Selection Method
= Currently least-cost first (“greedy”)

= Routing Metric

» Currently static metrics reflecting hop-count or weights
pre-determined by traffic engineers.

Our approach — Route granularity

One route per destination network node => high-volume
unit of re-routing => harder to load-balance

Therefore a node A divides the traffic through it to a
particular destination node into B buckets

= Division into buckets done independently by the network node (hash
of src/dst address), thus not affecting the interface to other
networks or end-hosts.

= Small B desirable to avoid per-flow routing state.

One route is maintained for each bucket

Our Approach — Randomization

Assume the link state (metric) is the load in the last link
state period.
Link state is inherently stale

= This can cause herd behaviour, leading to instability and imbalance

We introduce randomness into the routes selected across
different buckets for the same destination

= Randomly choose from r best routes.

= Best of r random routes (selected proportional to static costs)

= [Mitzenmacher97] showed that “best-of-2 random selection” was
ideally suited for server load-balancing with stale info.

= (Can also randomize time of route-change across buckets
» Edge-based route-selection, to avoid routing inconsistency.

ﬁ Our Approach — Metric

. Separation of static and dynamic metrics
= Capacity (or propagation delay) can be advertized
infrequently
= Load (or queue-length) need more frequent advertisement
. Load metric can be further improved (future work)
= By simulating the system and building a model of load-

transition.
= This improves performance for best-first selection, but not
significantly for random selection with “bucketization”

* Simulation Results

. Use random “fork”/t-s topologies (~50 nodes)
= Flow-level, assume the capacities and incoming loads to links can be
reported.
. Traffic matrix such that the overprovisioning factor O.F.
(min[Capacity/Load]) is low (~1.2)

. Objectives

= low stabilization times from initial state, or after increases in link
loads (factor of 2 or more)

m Low loss-rates assuming continuous arrival/departure of end-host
flows

R%l.]l tS Stabilization Time

30
27.5—

N
3}
|

22.5—

N
o
|

.. Bucketization” improves
stabilization times (and loss rates)
even with moderately low values of
B

17.5—

12.5

Stabilization Time (periods)

H
(6]
|

[[[[T [[[T[]

N N o
o v v ;o
I I |

Ik

2 4 8 1

Assuming randomization of time of No. of Buckets (8)
route-change Random: Red bars

Best-first: Blue b
= Since the unit of traffic change est-tirst: blue bars

becomes significantly lower than total
link loads.

Overprovisioning

1.75

15 —

. Random selection is a significant
improvement over best-first
selection.

125

0.75 —

Reqd. Overprov. factor

05 —

H
N

0.25 —

0 \ \ \
Greedy-B1 Greedy-B2 Random-B2 Random-B8

Method

Conclusion and Future Work

= In Conclusion..

= Can improve resilience of inter-domain routing by making alternate
routes available at the network layer

= Can make intra-domain routing more adaptive to load (and therefore

require lower over-provisioning), by using per-bucket routes and
random route selection.

s Future Work:

» Better, Dynamic Evaluation Scenario
« Failure location/time data for inter-domain routing
=« Traffic matrix and topology for intra-domain routing

» Better metric for load-sensitive routing
« Use model of state change.
« Effect of filtering, incorporate delay info.

