
Verifying Global Invariants in Multi-Provider Distributed
Systems

Sridhar Machiraju
UC Berkeley

Randy H. Katz
UC Berkeley

ABSTRACT
Confidentiality is an important requirement that re-
stricts information sharing between multiple providers
in inter-domain routing and, more generally, in any
Multi-Provider Distributed System (MPDS). However,
sharing such confidential information can make these
systems more robust by enabling the verification of global
system invariants. For instance, undesirable interaction
between intra-domain and inter-domain routing can be
prevented by verifying system invariants involving con-
fidential intra-domain information of neighboring do-
mains. In the literature, it is generally assumed that
global system invariants of MPDSs involving confiden-
tial information cannot be verified. In this paper, we
demonstrate that this is not true by constructing proof-
of-concept protocols that verify two such invariants rel-
evant for robust inter-domain routing. Our work ex-
poses a hitherto unexplored portion of MPDS design
space that has the potential for making such systems
more robust.

1. INTRODUCTION
An important property of inter-domain routing is that

competitive concerns force individual providers to hide
most of the intra-domain information that might be nec-
essary for robust routing. Such confidentiality concerns
apply to a variety of information including routing poli-
cies, link properties, link failures, etc. Though measure-
ments can reverse-engineer capacities [3], policies [27]
etc. to a reasonable extent, we argue that measurement
inaccuracies and overhead make these techniques useful
more for end-to-end decisions than for infrastructure-
based decisions.

Experience with inter-domain routing has shown that
the lack of crucial information can affect the robustness
of the system. For instance, lack of knowledge about
congestion in neighboring Autonomous Systems (ASs)
may cause an AS to make bad intra-domain traffic en-
gineering decisions [8, 28, 31]. Similarly, in the absence
of sufficient information on the policies of other ASs,
an AS could use routing policy that leads to divergent
routing [19]. Such problems can be solved by having

the ASs verify suitably defined global invariants [31].
However, since these invariants use confidential intra-
domain information, most existing solutions to such
problems remove the need for verifying global invari-
ants by limiting local autonomy [8, 14, 29]. We ar-
gue that confidentiality-preserving verification of invari-
ants is useful in any Multi-Provider Distributed System
(MPDS) since providers in these systems typically have
confidentiality requirements. Examples include systems
for caching [4], computing [12] and storage [20].

Winick et al. [31] used problem-specific aggregation
techniques to limit the amount of shared information
in verifying global invariants. However, their solution
does not preserve the confidentiality of such shared in-
formation. In this paper, we propose the use of prov-
ably secure solutions for Secure Multi-Party Computa-
tions (SMPC) [1] to verify global invariants. Since solu-
tions to solve arbitrary SMPC problems are highly in-
efficient [32], we take the approach of constructing effi-
cient problem-specific solutions. Such an approach was
shown to be feasible for information sharing between
databases [2]. We believe that this approach is also
feasible for MPDSs because many invariants in MPDSs
are likely to involve simple arithmetic operations. Sim-
ple arithmetic operations can be realized securely and
efficiently using homomorphic cryptosystems [25]. We
also believe that the commercial out-of-band relation-
ships between providers in an MPDS (e.g., peering re-
lationships in inter-domain routing) simplify the threat
model that needs to be considered. Specifically, these
relationships can be leveraged to address issues such as
arbitrary protocol termination and key exchange.

We demonstrate our approach by designing proof-of-
concept protocols that verify global invariants ensuring
safe traffic engineering and verifying policy safety in
inter-domain routing. We believe that the generality
of our techniques make them applicable in any MPDS
when the invariants involve simple arithmetic and out-
of-band relationships exist. We emphasize that our goal
is not to advocate the use of the global invariants that
we use. Rather, our aim is to expose a powerful class
of cryptographic techniques that can be employed to



address robustness issues in MPDSs.
The organization of this paper is as follows. In Section

2, we define global invariants, clarify our assumptions
and introduce homomorphic cryptosystems. In Section
3, we develop a protocol to verify a global invariant that
ensures safe intra-domain traffic engineering. In Section
4, we use a global invariant for conflict-free routing poli-
cies to motivate the hardness of verification with more
than two providers. We mention related work in Section
5. We discuss future directions and conclude in Section
6.

2. OVERVIEW
In this section, we first formally define global invari-

ants in MPDSs and our goal. Then, we discuss the
assumptions we make, including the threat model. Fi-
nally, we introduce homomorphic cryptosystems.

2.1 Global Invariants
In an MPDS, a global invariant refers to a triplet

G = (P, I, f()). Here, P is a set consisting of more
than 1 provider. I is a set of inputs, each of which
belongs to one of the providers in P . Also, each provider
in P has at least one input in I. f() is a boolean-
valued function that is evaluated on I. For the MPDS
to function properly, f(I) must be true. We refer to
testing this condition as verifying the invariant G. In
this paper, our goal is to illustrate how G can be verified
when some of the inputs (in I) are confidential and will
not be revealed by the owner to other providers.

2.2 Assumptions and Threat Model
We assume that, given a secure protocol, providers

would provide confidential information as input. We be-
lieve that this is true because the maintenance of global
invariants is necessary for the functioning of the system
(and hence, to the vital interests of the participants).
However, providers may lie about their inputs to influ-
ence the behavior of other providers, e.g., by causing the
invariant to be violated. Addressing this is outside the
scope of this paper and preventing this may be specific
to the problem being solved. Mechanisms belonging
to the area of Distributed Algorithmic Mechanism De-
sign (DAMD) [9] can be used to address these issues.
DAMD mechanisms are complementary to our proto-
cols; While they ensure that providers do not lie about
their inputs, secure protocols can be used to implement
these mechanisms without revealing the inputs.

Any protocol to verify a global invariant f(I) can-
not guarantee complete confidentiality of I. This is be-
cause the output, f(I), leaks some information about
I to the participants. Hence, a secure protocol should
prevent any more information leakage. However, a ma-
licious provider could abruptly terminate a protocol
thereby causing asymmetric information leakage. We

believe that such arbitrary termination is not a prob-
lem because providers in MPDSs are likely to possess an
out-of-band relationship, e.g., commercial peering rela-
tionships in inter-domain routing. Since such relation-
ships can be used to impose penalties on the malicious
provider, we assume that abrupt termination is not a
threat. We assume that the specific cryptosystems used
in our protocols are strong enough that the ciphertexts
leak negligible information about the plaintexts. Hence,
we do not consider the threat of eavesdroppers and third
parties.

2.3 Homomorphic Encryption
Next, we describe homomorphic cryptosystems that

allow us to perform simple arithmetic (addition and
multiplication) on encrypted values. A cryptosystem
for which E() represents the encryption operations, is
said to be (additive) homomorphic if E(m1)E(m2) =
E(m1 + m2). We only use additive homomorphic cryp-
tosystems such as Paillier’s [25] in this paper. The time
complexity of Paillier’s is similar [25] to El Gamal [7].
to We note that multiplicative homomorphic cryptosys-
tems such as El Gamal[7] may also be useful, in MPDSs.
The following are important properties of (additive) ho-
momorphic cryptosystems:

• E(m1) · E(m2) = E(m1 + m2), the homomorphic
property.

• (E(m))k = E(mk) ∀ k. A special case is k = −1.

• The ciphertexts before and after performing one
or more of the above operations can be used to de-
duce the operation. For instance, E(m) = E(−m)−1.
In such cases, E(−m) can be multiplied by a blind-
ing factor so that the operation cannot be deduced.

3. SAFE INTER-DOMAIN TRAFFIC ENGI-
NEERING

of flow f

55 Mbps

20 Mbps60 Mbps

50 Mbps

Peering
Point 1

Peering
Point 2

Destination
Source

of size 40Mbps

of flow f

Network A Network B

Mbps values denote available bandwidth

Figure 1: Shifting flow f from peering point 1 to

2 might seem advantageous without knowledge

of available bandwidth in B.

It is known [8, 29, 31] that traffic engineering within
an AS A can adversely affect a neighboring AS B by
overloading links in B. For instance, in Figure 1, A’s
operator might change the exit point of flow f from 1
to 2 based on available bandwidth in A only. As we can



Variable Description Private to
{di}1 ≤ i ≤ D Unique destination prefixes None
{pj}1 ≤ j ≤ P Peering points between None

A and B
{el}1 ≤ l ≤ N links in B B
ui,j,l; 1 if route to dest. di B
~Ui,j = ({ui,j,l}l) from pj uses link el,

0 otherwise
bl; available bandwidth B
~B = (b1, . . . bN ) on link el of B
δi,j ; Proposed change in traffic A
~∆ = ({δi,j}i,j) to di entering B at pj

Table 1: Notation used for Safe Traffic Engineer-

ing.

see, this has the effect of overloading the 20Mbps link
in B. Preventing this from happening requires that, sl,
the available bandwidth on any link el in B after traffic
engineering by A, should be non-negative. Using the
notation in Table 3,

sl = bl −
∑

(i,j)

δi,jui,j,l ≥ 0 ∀ l (1)

Formally, the global invariant that needs to be satisfied
is G = ({A,B}, {~∆, ~B, {~Ui,j}i,j}, f()) where

f(I) = [ ~B −
∑

(i,j)

δi,j
~Ui,j ≥ ~0] (2)

A similar invariant was proposed in [31]. They verified
the invariant by reducing the information revealed using
problem-specific aggregation. In contrast, we propose
the use of a provably secure class of cryptographic tech-
niques. Nevertheless, the aggregation techniques used
in [31] can be used along with our protocol to achieve
better scalability. The approach proposed in [8, 29] is
to remove the need to verify the invariant by bringing
each δi,j value close to 0. This is an alternative ap-
proach that has the disadvantage of restricting the set
of traffic engineering choices that A can make.

3.1 Verifying the Invariant
We now describe a protocol that verifies the invari-

ant specified above. We assume that A uses homomor-
phic public-key encryption and provides its public key
to B using its out-of-band relationship. EA and DA de-
note the corresponding encryption and decryption op-
erations. The basic idea behind the following proto-
col is that B can compute the sl values by the homo-
morphic property. A can decrypt these values to verify
the invariant. The protocol is as follows. (1) A sends
EA(−δi,j) ∀ (i, j) to B. (2) B calculates EA(sl) ∀l.
It can do this by computing EA(bl) and multiplying it
with all EA(−δi,j) for which ui,j,l is 1. The product is
EA(sl) by the homomorphic property. (3) The various
EA(sl) values are sent to A. (4) Using the decryption

operation DA, A can verify if all N values of sl are
positive.

Clearly, EA ensures that B learns nothing about A’s
inputs. However, the above protocol leaks information
on the sl values to A.

3.2 Reducing Information Leakage
Next, we modify the above protocol to prevent A from

knowing anything but f(I). For ease of exposition, we
assume the existence of a cryptographic primitive CA

that allows A to determine sign(x)(1 if x ≥ 0, −1 oth-
erwise), without determining the value of x. We de-
scribe CA later. In the above protocol, B can invoke
CA on each sl value to prevent A from knowing the sl

values. However, this provides A with information on
sign(sl). To prevent such leakage too, we let B invoke
CA on −sl with a probability of half. The results of
these invocations are finally converted into cong, the
number of negative sl values, using the homomorphic
property. Finally, CA is invoked on cong. The complete
modified protocol is as follows:

• A sends EA(−δi,j) ∀ (i, j) to B.

• B calculates EA(sl) ∀l.

• If B invokes CA on EA(sl), A can determine sign(sl).
To prevent this, B invokes CA on EA(slrl) where
rl is ±1 with equal probability. EA(slrl) can be
calculated from EA(sl) using homomorphism.

• To prevent B from knowing sign(slrl), A sends
EA(sign(slrl)). Since A can pre-compute EA(±1),
there is no computational complexity.

• Using the homomorphic property, B calculates EA(cong)
by computing EA(

∑
l sign(slrl)rl − N). Observe

that, since rl = ±1, sign(slrl)rl = sign(sl). Clearly,
cong < 0 iff at least one link gets congested.

• B invokes CA on EA(cong) so that A can deter-
mine sign(cong) and hence, if the proposed traffic
matrix change is safe or not.

Since no plaintext is ever revealed to B, no informa-
tion is leaked to it. The plaintexts revealed to A are
sign(slrl) which leaks no information since rl is ran-
dom. A does obtain information on N , the number of
links in B in the third step. B can prevent this by send-
ing encryptions of a few dummy values in addition to
EA(slrl) ∀ l. Thus, the above protocol does not reveal
anything other than f(I). Note that A (or B) can mis-
behave so that the final boolean value is a function of I

different from f(). Addressing this is out of the scope
of this paper.

3.2.1 Cryptographic Primitive CA

The cryptographic primitive CA that allows A to de-
termine sign(x) without knowing x is closely related to



Yao’s millionaires’ problem [32]. In our threat model,
we do not consider arbitrary termination of the proto-
col. This makes it possible for us to design our primi-
tive to be much simpler than previous solutions [5]. We
also assume that the absolute value of x is less than a
small number, xmax. This is justified because the sl

values typically take, say, 10000 values from 1Mbps till
10Gbps.

Our primitive uses commutative encryption [2]. Two
encryption functions f1, f2 are commutative if f1(f2(x)) =
f2(f1(x)). For suitably chosen prime p, any two discrete-
log based encryptions [7] defined as fy(x) = xy(mod)n
satisfy this property because (xy1)y2mod(p) is (xy2)y1(mod)p.
The basic idea behind CA is for A and B to choose com-
mutative encryption functions fA and fB using the out-
of-band mechanism. These are used by A to verify the
membership of x in the set of integers from [0, xmax]
securely.

• Given EA(x), B calculates EA(x+r) for some ran-
dom r using the homomorphic property and sends
it to A.

• B calculates the set PosB = (fB(r), fB(r+1), . . . ,
fB(r + xmax)) and sends a randomly permuted
PosB to A.

• A decrypts x + r and sends fA(x + r) to B.

• B calculates fA ◦ fB(x + r) and sends it to A.

• A checks if it belongs to the set Pos = (fA ◦
fB(r), . . . , fA ◦ fB(r + xmax)).

B cannot determine x since EA is secure and it is com-
putationally hard for B to calculate x+r from fA(x+r).
A knows x+r but the random r prevents it from know-
ing anything about x. Also, the hardness of inverting
fB prevents A from knowing the value of r from PosB .
To prevent either party from using previous compari-
son operations, A and B should frequently change the
commutative encryption functions used.

Though the above protocol requires the encryption
of xmax + 1 values (with fA ◦ fB), this can be pre-
computed. Also, efficient compression tools such as
compressed Bloom filters [24] can be used to efficiently
store such pre-computed vectors. Hence, CA essentially
requires one encryption, decryption and three exponen-
tiations. Thus, the running time of the modified pro-
tocol in Section 3.2 is dominated by the O(DP ) en-
cryptions in the first step, the O(M + N) decryptions
in the third step and N invocations of CA. The num-
ber of large-integer operations in calculating sl is cN

where c is the number of links each flow would traverse.
Assuming values of D,P,N, c of about 500, 10, 1000
and 10 [26] respectively, we see that a few thousand en-
cryption/decryption operations need to be performed.
These can be done in a few seconds with specialized
hardware.

4. POLICY-INFLICTED DIVERGENCE
As shown in [19], BGP routing policies can interact

to cause divergent routing. In general, checking for di-
vergence is NP-complete. The solution proposed in [14]
is for domains to locally constrain their policies. It is
generally thought [18] that this is preferable because of
the hardness of checking for divergence and confiden-
tiality of inter-domain policies. In this section, we show
that the confidentiality of policy is not a problem. Due
to the lack of prior work exploring easily verified policy
specifications, we motivate a simple specification and
develop a protocol to verify it. We emphasize that our
contribution is to demonstrate that confidentiality con-
cerns are no hurdle to verifying policy safety; Our goal
is not to advocate that ASs use our policy specification.

4.1 A Simple Invariant
The solution proposed in [14] is to have providers con-

strain their policies such that (1) The customer-provider
directed graph is acyclic. (2) A route through a cus-
tomer should always be preferred over a route through a
peer or provider. (3) A route through a provider or peer
should not be exported to another provider or peer. We

D

peers

C1

C3

C2

C4

P2P1

S

Figure 2: For a destination D, P1 may prefer

to export to C1 a path through P2 over a path

through C2.

believe that, in the future, such local constraints alone
may not satisfy the requirements of ASs. We illustrate
this using the provider-customer directed graph shown
in Figure 2. The link between Provider P1 and its cus-
tomer C2 is congested. To alleviate this congestion, P1
would like traffic to destination D from S to transit P2,
and not C2. The scenario described above requires P1
to violate the local constraints above and prefer a longer
peer route over a customer route.

Observe that, in the long term, P1 in Figure 2 may
find it economically advantageous to upgrade the link to
C2. However, until that time, it might have to resort to
choosing P2, if possible. This motivates us to consider
the possibility of small deviations from local constraints.
Specifically, for each destination D, policy safety might



be ensured even if a small number of ASs violate one
or more of the local constraints. For instance, the sys-
tem in Figure 2 is convergent if P1 alone deviates from
the second policy constraints. To see this, consider the
effect of P1 changing its policy from preferring C2 to
P2. The effect of this change would be:

• A peer/provider of P1 to which P1 did export the
original route through C2 would see a withdrawal
from P1. Hence, the effect of the policy change is
equivalent to failures of the links from P1 to these
ASs. This is known to be safe.

• P1 may not have exported the original route to
some peers/providers. They do not receive any
new update. This is because a route through a
peer is not advertised to other peers/providers.

• Direct/indirect customers of P1 might receive the
newer route and may prefer this route (through
their providers) and advertise it to their customers
only. Since the provider-customer graph remains
acyclic, this is safe. In terms of activation se-
quences [17], the stable state is achieved by ac-
tivating ASs from P1 downward.

4.2 The New Global Invariant
The small deviation mentioned above would not cause

route divergence if at most one AS per destination pre-
fix uses the deviant policy of preferring a peer over a
customer. This can be formalized as a global invariant
G = (P, I, f()) for every destination prefix. Here, P

is the set of all N Autonomous Systems. I consists of
rp(∀p ∈ P ) where rp is 1 if AS p follows a deviant policy
to reach the corresponding destination prefix and 0 oth-
erwise. The system is safe if

∑
p rp = N . The invariant

G can be verified without revealing I as described in
the following protocol:

• A threshold variant of Paillier’s [11] is used so that
each AS possesses a share of the private key and
only a large number (say, more than half) of the
ASs can together decrypt ciphertexts. The public
key is known to all ASs and hence, each of them
can calculate E(m). The shared secret key can be
reused many times and hence, can be constructed
out-of-band.

• Each AS p advertises E(rp).

• Each AS multiplies all the advertised values to cal-
culate E(

∑
p rp) = E(n), where n is the number

of deviant ASs.

• Decryption of E(n) can be done in a distributed
manner[11]. Iff n is less than 2, the deviant AS can
follow the deviant policy. Otherwise, all deviant
ASs must abandon the deviant policy.

The distributed nature of the secret key ensures that
the rp values are not revealed to others. Note that, af-
ter the protocol, the number of deviant ASs is known.
Each instance of the above protocol requires one dis-
tributed encryption and decryption. This can easily
be done in 30 seconds. By running the above protocol
for 30 destination prefixes in parallel every 30 seconds,
policy safety for almost all destination prefixes can be
verified every day. The requirement of only a single de-
viant AS per destination prefix is probably too strong.
We are currently investigating weaker (and easily verifi-
able) conditions. Also, the above protocol requires that
all ASs share a key which may not be possible. We are
currently investigating policy specifications and verifi-
cation techniques that can best leverage the bilateral
peering relationships.

5. RELATED WORK
Many homomorphic cryptosystems have been pro-

posed in cryptographic literature. Some examples in-
clude the El Gamal cryptosystem [7] and Paillier’s [25].
The general problem of Secure Multi-Party Computa-
tions (SMPC)[32] has been the subject of extensive re-
search [1]. Recent work has applied solutions to specific
computations to solving practical problems. Du et al.
[6] study a variety of specific secure two-party compu-
tations. The solution proposed in [5] assumes a third
party to solve Yao’s problem since their threat model in-
cludes arbitrary termination. Cryptographic protocols
for constructing secure set operations are presented in
[2]. Commutative encryptions are also used in [2].

Many recent proposals propose MPDSs for a vari-
ety of tasks, apart from inter-domain routing, such as
caching [4], computing [10, 12] and storage [20]. In the
context of inter-domain routing, interactions between
intra-domain and inter-domain routing have been ex-
plored in [8, 28, 29, 31]. The solutions proposed in [23,
31] verify global invariants using problem-specific ag-
gregation techniques that reduce the amount of shared
information. These do not address the fundamental
question of working with confidential information. All
other prior work [8, 28, 29] restrict intra-domain traffic
engineering so that it does not adversely affect inter-
domain routing. The possibility of policy-conflicts in
inter-domain routing was shown in [15, 16]. Gao et
al. [14] designed routing policy guidelines that ensured
safety by restricting local autonomy. Gao et al. [13]
extended the local constraints to allow backup routing
using information such as the the number of backup
links on a path. In essence, they introduce a distributed
global invariant that reveals information on backup links.
The computation complexity of verifying policy safety
for an arbitrary policy specification was shown in [18,
19]. The hardness of verifying policy safety due to the
confidentiality of policies was alluded to, in [14, 18].



6. CONCLUSIONS AND FUTURE WORK
In this paper, we argue that solutions to secure multi-

party computations can be used to verify global invari-
ants involving confidential information in MPDSs. We
design two proof-of-concept protocols to demonstrate
our approach. Our protocols verify two global invari-
ants, one for safe traffic engineering and another to
verify policy safety. We do not claim that these in-
variants are the most important invariants that need to
be verified or that our techniques are the most optimal
way of verifying them. Our protocols expose a pow-
erful class of cryptographic techniques that can make
MPDSs more robust without sacrificing significant local
autonomy when (1) Out-of-band commercial relation-
ships between providers can be leveraged to simplify the
threat model and for key distribution. (2) Global in-
variants involve simple arithmetic operations. Whether
other invariants can be verified easily is an open ques-
tion. SMPC can potentially be used for global decisions
other than verifying invariants. For instance, some of
our ongoing work [22] is aimed at developing solutions
that allow more general forms of cooperative routing
than considered in this paper. Other global decisions in
MPDSs arise in the context of content distribution net-
works [4] and intrusion detection [21, 30]. Future work
also needs to address fundamental limitations in using
SMPC for MPDSs.

7. ACKNOWLEDGMENTS
We thank Anand Desai, Karthik Lakshminarayanan,

Mukund Seshadri, Weidong Cui and Lakshminarayanan
Subramanian for useful discussion and comments about
this paper. We also thank the anonymous reviewers for
their insightful comments.

8. REFERENCES
[1] Secure Multiparty Computations.

http://www.tcs.hut.fi/~helger/crypto/link/mpc/.

[2] R. Agrawal, A. Evfimievski, and R. Srikant. Information
sharing across private databases. In Proc. of ACM
SIGMOD, 2003.

[3] D. ”Allen B. Using Pathchar to Estimate Internet Link
Characteristics. In Proc. of ACM SIGCOMM, 1999.

[4] L. Amini, A. Shaikh, and H. Schulzrinne. Effective Peering
for Multi-provider Content Delivery Services. In Proc. of
IEEE INFOCOM, 2004.

[5] C. Cachin. Efficient Private Bidding and Auctions with an
Oblivious Third Party. In Proc. of ACM CCS, 1999.

[6] W. Du. A Study of Several Specific Secure Two-party
Computation Problems. PhD thesis, Purdue University,
West Lafayette, Indiana, 2001.

[7] T. El Gamal. A Public Key Cryptosystem and a Signature
Scheme based on Discrete Logarithms. In Proc. of
Advances in Cryptology (CRYPTO), 1984.

[8] N. Feamster, J. Borkenhagen, and J. Rexford. Guidelines
for Interdomain Traffic Engineering. ACM SIGCOMM
CCR, October 2003.

[9] J. Feigenbaum and S. Shenker. Distributed Algorithmic
Mechanism Design: Recent Results and Future Directions.
In Proc. of Dial-M, 2002.

[10] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of
the Grid: Enabling Scalable Virtual Organizations. Lecture
Notes in Computer Science, 2001.

[11] P.-A. Fouque, G. Poupard, and J. Stern. Sharing
decryption in the context of voting or lotteries. Lecture
Notes in Computer Science, 1962, 2001.

[12] Y. Fu et al. SHARP: An Architecture for Secure Resource
Peering. In Proc. of SOSP, 2003.

[13] L. Gao, T. Griffin, and J. Rexford. Inherently Safe Backup
Routing with BGP. In Proc. of IEEE INFOCOM, 2001.

[14] L. Gao and J. Rexford. Stable Internet Routing without
Global Coordination. In Proc. of ACM SIGMETRICS,
June 2000.

[15] R. Govindan, C. Alaettinoglu, G. Eddy, D. Kessens,
S. Kumar, and W. Lee. An Architecture for Stable,
Analyzable Internet Routing. IEEE Network Magazine,
January/February 1999.

[16] T. Griffin, F. B. Shepherd, and G. T. Wilfong. Policy
Disputes in Path-Vector Protocols. In Proc. of ICNP,
Toronto, Canada, November 1999.

[17] T. Griffin and G. T. Wilfong. A Safe Path Vector Protocol.
In Proc. of IEEE INFOCOM, March 2000.

[18] T. G. Griffin, F. B. Sheperd, and G. Wilfong. The Stable
Paths Problem and Interdomain Routing. IEEE/ACM
TON, 10(2), April 2002.

[19] T. G. Griffin and G. Wilfong. An Analysis of BGP
Convergence Properties. In Proc. of ACM SIGCOMM,
1999.

[20] J. Kubiatowicz et al. OceanStore: An Architecture for
Global-Scale Persistent Storage. In Proc. of ASPLOS,
November 2000.

[21] P. Lincoln, P. Porras, and V. Shmatikov.
Privacy-Preserving Sharing and Correlation of Security
Alerts. In Proc. of USENIX Security Symposium, August
2004.

[22] S. Machiraju and R. H. Katz. Reconciling Cooperation
with Confidentiality in Multi-Provider Distributed Systems.
Technical Report UCB//CSD-04-1345, 2004.

[23] R. Mahajan, D. Wetherall, and T. Anderson. Interdomain
routing with Negotiation. Technical Report CSE-04-06-02,
2004. University of Washington.

[24] M. Mitzenmacher. Compressed Bloom Filters. In Proc. of
ACM PODC, 2001.

[25] P. Paillier. Public-Key Cryptosystems Based on Discrete
Logarithms Residues. In Proc. of Eurocrypt, 1999.

[26] K. Papagiannaki, N. Taft, and C. Diot. Impact of Flow
Dynamics on Traffic Engineering Design Principles. In
Proc. of IEEE INFOCOM, March 2004.

[27] N. Spring, R. Mahajan, and T. Anderson. Quantifying the
Causes of Path Inflation. In Proc. of ACM SIGCOMM,
August 2003.

[28] R. Teixeira, A. Shaikh, T. Griffin, and J. Rexford.
Dynamics of Hot-Potato Routing in IP Networks. In Proc.
of ACM SIGMETRICS, June 2004.

[29] R. Teixeira, A. Shaikh, T. Griffin, and G. M. Voelker.
Network Sensitivity to Hot-Potato Disruptions. In Proc. of
ACM SIGCOMM, September 2004.

[30] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham.
Large Scale Malicious Code: A Research Agenda, 2003.
DARPA sponsored report, http://www.cs.berkeley.edu/
~nweaver/large_scale_malicious_code.pdf.

[31] J. Winick, S. Jamin, and J. Rexford. Traffic Engineering
between Neighboring Domains, July 2002. http:
//www.research.att.com/~jrex/papers/interAS.pdf.

[32] A. C. Yao. Protocols for Secure Computations. In Proc. of
FOCS, 1982.


