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Abstract

Enterprise applications typically depend on guaranteed
performance from the storage subsystem, lest they fail.
However, unregulated competition is unlikely to result in
a fair, predictable apportioning of resources. Given that
widespread access protocols and scheduling policies are
largely best-effort, the problem of providing performance
guarantees on a shared system is a very difficult one.
Clients typically lack accurate information on the stor-
age system’s capabilities and on the access patterns of
the workloads using it, thereby compounding the problem.
CHAMELEON is an adaptive arbitrator for shared storage
resources; it relies on a combination of self-refining mod-
els and constrained optimization to provide performance
guarantees to clients. This process depends on minimal
information from clients, and is fully adaptive; decisions
are based on device and workload models automatically in-
ferred, and continuously refined, at run-time. Corrective
actions taken by CHAMELEON are only as radical as war-
ranted by the current degree of knowledge about the sys-
tem’s behavior. In our experiments on a real storage sys-
tem CHAMELEON identified, analyzed, and corrected per-
formance violations in 3-14 minutes—which compares very
favorably with the time a human administrator would have
needed. Our learning-based paradigm is a most promis-
ing way of deploying large-scale storage systems that ser-
vice variable workloads on an ever-changing mix of device
types.

1 Introduction

A typical consolidated storage system, in which multiple
clients store and access petabytes’ worth of data [21], serves
the needs of various, independent, paying customers (e.g., a
storage service provider) or divisions within the same or-
ganization (e.g., a corporate data center). Consolidation
has proven to be an effective remedy for the low utiliza-
tions that plague storage systems [12], for the expense of
employing scarce system administrators, and for the disper-
sion of related data into unconnected islands of storage. In
the utility model, each client is guaranteed a portion of the

shared resources regardless of whether other clients over-
or under-utilize their allocations. Purchasing costs play a
dwindling role relative to managing costs in current enter-
prise systems [12].

This paper addresses the problem of allocating resources
in a fully automated, cost-efficient way so that most clients
experience predictable performance in their accesses to a
shared, large-scale storage utility. Although performance is
just one of the dimensions of Quality of Service (QoS), it
is the most critical and less understood. Static provisioning
approaches to providing performance isolation and guaran-
teed performance are far less than optimal, given the high
variability (e.g., burstiness) of I/O workloads and the in-
complete characterizations of storage device capabilities[8].
Furthermore, static resource allocations do not contemplate
hardware failures, load surges, and workload variations;
system administrators must currently deal with those by
hand, as part of a slow and error-prone observe-act-analyze
loop. Prevalent access protocols (e.g., SCSI and FibreChan-
nel) and resource scheduling policies are largely best-effort;
unregulated competition is unlikely to result in a fair, pre-
dictable resource allocation.

Previous work on this problem includes management
policies encoded as sets of rules [14, 28], heuristic-based
scheduling of individual I/Os [8, 16, 19, 13], decisions
based purely on feedback loops[18, 9] and on the predic-
tions of models for system components[3, 2, 4]. The result-
ing solutions are either not adaptive at all (as in the case
of rules), or dependent on hard-to-obtain models, or igno-
rant of the system’s performance characteristics as observed
during its lifetime.

This paper’s main contribution is to demonstrate a
novel technique for making automatic throttling decisions,
based on a combination of performance models, con-
strained optimization, incremental feedback, and policies.
CHAMELEONis a framework in which clients whose Ser-
vice Level Agreement (SLAs) are not being met get ac-
cess to additional resources freed up by throttling (i.e., rate-
limiting) [8, 18] competing clients. Our goal is to take more
accurate corrective actions as we learn more about the char-
acteristics of the running system, and of the workloads be-
ing presented to it. As shown in Figure 1, CHAMELEON op-
erates at any point in a continuum between decisions made
based on relatively uninformed, deployment-independent
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Figure 1. CHAMELEON moves along the line ac-
cording to the quality of the predictions gen-
erated by the internally-built models at each
point in time.

heuristics, and on blind obeyance to models of the particular
system being managed (Figure 1). This is done by having
the throttling step size be a function of the statistical con-
fidence of the models built automatically by CHAMELEON;
when that confidence falls below a threshold, we revert to
generic base heuristics.

By striking a balance between sub-optimal policies, un-
informed feedback control, and model-based predictions,
CHAMELEON can react to workload changes in a nim-
ble manner, resulting in a marginal number of QoS vio-
lations. In our experiments on a real storage system us-
ing real-world workload traces, CHAMELEON managed to
find the set of throttling decisions that yielded the maxi-
mum value of the optimization function, while minimiz-
ing the amount of throttling required to meet the targets
and while satisfying the QoS requirements of most clients.
Since it does not depend on prior knowledge about devices
or workloads, our approach can be easily deployed on large-
scale storage systems that service variable workloads on an
ever-changing mix of device types. Our ultimate vision, of
which CHAMELEON is just a part, is to combine automatic
workload, device, and action characterization with machine
learning, in order to solve a variety of systems management
problems while operating on incomplete information [26].

The structure of this paper is as follows. Section 2 de-
scribes the architecture of CHAMELEON. We then proceed
to describe the main components: the models (Section 3),
the reasoning engine (Section 4), the base heuristics (Sec-
tion 5), and the feedback-based throttling executor (Sec-
tion 6). Section 7 describes our prototype and presents ex-
perimental results. Section 8 reviews previous research in
the field, and Section 9 presents our conclusions and future
directions.

2 Overview of CHAMELEON

CHAMELEON is a framework for providing predictable
performance to multiple clients accessing a common stor-
age infrastructure, as shown in Figure 2. Multiple hosts
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Figure 2. System model: CHAMELEON has ac-
cess to performance data captured between
the hosts and the storage back-end, and
can effect throttling decisions at the same
points. Such instrumentation points can be
co-located with logical volume managers or
block-level virtualization appliances [11].

connect to storage devices in the back end in such a way
that CHAMELEON can monitor every I/O processed by the
system, thus gathering information on the access patterns,
throughput and latency. Each workload has a known SLA
associated with it, and uses a fixed set of physical com-
ponents (such as controllers, disks, switches), and logical
components (such as logical volumes) that are together re-
ferred to as its invocation path. CHAMELEON detects work-
loads whose SLAs are not being met, and solves the vi-
olations by identifying and throttling workloads whose re-
source consumption should be curtailed. It also periodically
checks for unused bandwidth, and selectively unthrottles
some workloads.

Our SLAs are conditional: they specify maximum av-
erage I/O latencies over short sampling periods, as long as
workloads request up to a maximum number of bytes and
I/Os (throughput) during said periods. If workloads inject
load into the system at more than the rate prescribed in their
SLAs, the system is under no obligation of guaranteeing
any bound on latency. Obviously, such rogue workloads
are prime choices for resource restriction; but in some ex-
treme cases, well-behaved workloads may also need to be
restricted. Throttling is effected at the client hosts by the
leaky bucket protocol [25] where each workload is given
tokens every 10 ms., and I/O rates are averaged over a slid-
ing window of 1200 s. for comparison with the SLA.

The core of CHAMELEON consists of four parts, as
shown in Figure 3:

� Knowledge base: by taking periodic performance
samples on the running system, CHAMELEON builds
internal representations of system behavior without
any human supervision; these we encapsulate using
black-box models. Our black-box models are mathe-
matical functions that quantify the capabilities of each
component in the system, the demands placed by each
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Figure 3. Architecture of CHAMELEON.

workload on each component, and the reaction of each
workload to different levels of throttling. Models get
better as time goes by, for CHAMELEON refines them
automatically; they may bootstrap from a tabula rasa,
or from convenient oversimplifications (e.g., an M/M/1
queueing system) for faster convergence.

� Model-based optimization: CHAMELEON decides
the workload throttle values using constrained opti-
mization techniques such as piecewise linear program-
ming. Our constraints compare load and performance
as predicted by the models against the SLAs. Many
possible administrator-defined objective functions can
be used to reflect the business goals of the storage util-
ity, e.g., “minimize the number of SLA violations”, or
“ensure that highest priority workloads always meet
their guarantees”. Based on the errors associated with
the models, the output of the constraint solver is as-
signed a confidence value.

� System-designer policies: As a fallback mechanism,
we maintain a set of fixed heuristics specified by the
system designer for system-independent, coarse-grain
resource arbitration. Examples include “throttle all
workloads sharing any component with the workload
in trouble”, or “greedily throttle lower-priority work-
loads as long as high-priority SLA violations exist”.

� Informed feedback loop: The general guiding princi-
ple is to take radical corrective action as long as that
is warranted by the available knowledge about the sys-
tem. If the confidence value from the solver is below
a certain threshold (e.g., during bootstrapping of the
models), CHAMELEON falls back on the fixed policies
to make decisions. Otherwise, the feedback module
applies throttling decisions incrementally: the step size
is a function of the confidence value. After each iter-
ation, the feedback module has the option of contin-
uing to apply prior decisions incrementally, or query-
ing the reasoning engine to re-evaluate throttling de-
cisions (e.g., when it observes abrupt changes in the
system’s behavior).

3 Knowledge base

CHAMELEON builds models in an automatic, unsuper-
vised way. It uses them to characterize the workload being
presented to the storage system, and the expected response
of system components to different load types and intensi-
ties.

Models based on simulation or emulation require a
fairly detailed knowledge of the system’s internals; analyt-
ical models require less, but device-specific optimizations
must still be taken into account to obtain accurate predic-
tions [27]. Black-box models are built by recording and cor-
relating inputs and outputs to the system in diverse states,
without regarding its internal structure. We chose them be-
cause of properties not provided by the other modeling ap-
proaches: black-box models can evolve with changes in the
component behavior, workload characteristics, and action
effects, and they make very few assumptions about the phe-
nomena being modeled. Because of this, black-box models
are an ideal building block for an adaptive, deployment-
independent management framework that doesn’t depend
on preexisting model libraries.

At the same time, the black-box models used
in CHAMELEON are less accurate than their analytical coun-
terparts; our adaptive feedback loop compensates for that.
The focus of this paper is to demonstrate how several
building blocks can work together in a hybrid management
paradigm; we do not intend to construct good models, but
to show that simple modeling techniques are adequate for
the problem. CHAMELEON’s models are constructed using
Support Vector Machines (SVM) [17], a machine-learning
technique for regression. This is similar to the CART [30]
techniques for modeling storage device performance, where
the response of the system is measured in different system
states and represented as a best-fit curve function. Table-
based models [3], where system states are exhaustively
recorded in a table and used for interpolation, are not a vi-
able solution as they represent the model as a very large
lookup table instead of the analytic expressions that our
constraint solver takes as input.

Black-box models depend on collecting extensive



amounts of performance samples. Some of those metrics
can be monitored from client hosts, while others are tal-
lied by each component—and collected via proprietary in-
terfaces for data collection, or via standard protocols such
as SMI-S [22].

A key challenge is bootstrapping, i.e., how to make deci-
sions when models have not yet been refined. There are
several solutions for this: run a battery of tests in non-
production mode to generate baseline models, or run in a
monitor-only mode until models are sufficiently refined, or
use a pre-packaged library. We follow different approaches
for different model types; but in all cases models are in-
crementally refined from performance observations, while
the level of confidence in their predictions increases. We
proceed to discuss how models are represented internally,
bootstrapped and refined from performance observations.

3.1 Component models
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Figure 4. Component model.

A component model predicts values of a delivery met-
ric as a function of workload characteristics. CHAMELEON
can in principle accommodate models for any system com-
ponent. In particular, the model for a storage device takes
the form:
Response time = � ������� �
	���������� ����������� �����	����������������������� ���!��	��"�� � � �$# � # 	%� �������&
Function � is inherently non-linear, but can be approximated
as piecewise linear with a few regions. We obtain this rep-
resentation using SVM, as shown in Figure 4. Another
source of error is the effect of multiple workloads sending
interleaved requests to the same component. We approx-
imate this nontrivial computation by estimating the wait
time for each individual stream as per a multi-class queue-
ing model [15]; more precise solutions [6] incorporate dif-
ferent workload characteristics. The effects of caching at
multiple levels (e.g., hosts, virtualization engines, disk ar-
ray controllers, disks) also introduce additional errors.

We took the liberty of bootstrapping component models
by running off-line calibration tests against the component
in question: a single, unchanging, synthetic I/O stream at a
time, as part of a coarse traversal of � ’s parameter space.

3.2 Workload models

Representation and creation of workload models has
been an active area of research [7]. In CHAMELEON, work-
load models predict the load on each component as a func-
tion of the request rate that each workload injects into the
system. For example, to predict the rate of requests at com-
ponent

	
originated by workload ' :

Component load (*) + =
� (*) + ���,���.-/"0���� ������� ���
� ������ + &

In real scenarios, function
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workload ' changes or other workloads change their access
patterns (e.g., a workload with good temporal locality will
push other workloads off the cache). To account for these
effects, we represent function
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Figure 5. Workload model for SPC.

Figure 5 shows the workload models for the SPC web-
search trace [10] running on a 24-drive RAID 1 LUN de-
fined on an IBM FAStT 900 storage controller. From the
graph, a workload request rate of 1500 iops in SPC trans-
lates to 2000 iops at the controller.

In practical systems, reliable workload data can only
be gathered from production runs. We therefore bootstrap
workload models by collecting performance observations;
CHAMELEON resorts to throttling heuristics in the mean-
time, until workload models become accurate enough.

3.3 Action models

In general, action models predict the effect of correc-
tive actions on workload requirements. The throttling ac-
tion model computes each workload’s average request rate
as a function of the token issue rate, i.e.
Workload request rate =

� �����.-1�
� 	����
�2� �������&
Real workloads exhibit significant variations in their I/O re-
quest rates due to burstiness and to ON/OFF behaviors [6].
We model

�
as a linear function:

� �����.-/��� 	����$� � �������&43
576 ���.-/��� 	����$� � ������

where
5 398

initially for bootstrap-
ping. This simple model assumes that the components in
the workload’s invocation path are not saturated.

To handle bursty workloads more realistically, we could
have

5
be a function of the request rates observed in the

latest
�

sampling periods. This would maintain the Prob-
ability Distribution Function (PDF) of the request rate for
each workload, and compute

5
as a moving average of a

given percentile.
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will, in general, also deviate from our lin-
ear model because of performance-aware applications (that
modify their access patterns depending on the I/O perfor-
mance they experience) and of higher-level dependencies
between applications that magnify the impact of throttling.

4 Reasoning engine

The reasoning engine computes the rate at which each
workload stream should be allowed to issue I/Os to the stor-
age system. It is implemented as a constraint solver (using
piecewise-linear programming [1]) that analyzes all possi-
ble combinations of workload token rates and selects the
one that optimizes an administrator-defined objective func-
tion, e.g., “minimize the number of workloads violating
their SLA”.

It should be noted that the reasoning engine is not just
invoked upon an SLA violation to decide throttle values,
but also periodically to unthrottle the workloads if the load
on the system is reduced.

4.1 Intuition

The reasoning engine relies on the component, work-
load, and action models as oracles on which to base its
decision-making. Figure 6 illustrates a simplified version
of how the constraint solver builds a candidate solution:
1) for each component used by the underperforming work-
load (i.e., the one not meeting its SLA), use the component’s
model to determine the change in request rate at the compo-
nent required to achieve the needed decrease in component
latency; 2) query the model for each workload using that
components, to determine which change in the workload’s
I/O injection rate is needed to relieve the component’s load;
3) using the action model, determine the change in the to-
ken issue rate needed for the sought change in injection rate;
4) record the value of the objective function for the candi-
date solution. Then repeat recursively for all combinations
of component, victim workload, and token issue rates. The
reasoning engine is actually more general: it considers all
solutions, including the ones in which the desired effect is
achieved by the combined results of throttling more than
one workload.

4.2 Formalization in Chameleon

To formalize the problem for constraint solving, we need
to formulate the task of deciding throttle values in terms of
variables, objective function, and constraints.

Variables

One per workload, representing its token issue
rate:
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Figure 7. Workload classification. Region lim-
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Objective function

Workloads are pigeonholed into one of the four regions
(Figure 7) according to their current request rate, latency,
and SLA goals: meet, failed, lucky, and exceeded.
Region names are self-explanatory—lucky denotes work-
loads that are getting a higher throughput while meeting
the latency goal, and exceeded denotes higher through-
put while violating the latency goal.

Many objective functions can be accommodated by the
current CHAMELEON prototype (e.g., all linear functions);
moreover, it is possible to switch them on the fly. For our
experiments, we used

� 	%�!	�� 	�� ���
(
	����������
�

���� �������������� "!
�$# (%$&(' # (*) � ( �*� ( &

%$&(' #+!
����
(1)

where �$# ( are the workload priorities, �$���,�����-���. "! are the
quadrant priorities (i.e., the probability that workloads in
each region will be selected as throttling candidates), and� ( ��� ( & represents the action model for / 	

. Table 1 provides
some insight into this particular choice.

Constraints

Constraints are represented as inequalities: the latency of a
workload should be less than or equal to the value specified
in the SLA. More precisely, we are only interested in solu-
tions that satisfy

"0����
� ��0 # (21 %$&(' # ( for all workloads/ ( running in the system.
The value of

"*������ ��0 # ( is estimated using the following
chain of parameters: t 3 application request rate 3 com-
ponent request rate 3 component latency. Equivalently,"*������ ��0 # ( 3 � ���4�*� ����& &�& .

For example, with only a single workload / �
running

in the system with its I/O requests are being served by a
storage controller followed by physical disks is represented
as the following constraint:

��4
5 � "� 5�67698 � ��� � ) 4
5 �. "� 5�67698 � �*� � �*��&�& &�: � � (<;�=�; ��� � ) � (>;�=�; �*� � ����&�& & 1 %$&?'
�

(2)
In general, multiple workloads will share the components.
As such, a more realistic example is:
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Figure 6. Overview of constrained optimization.

Intuition How it is captured
The lower a work-
load’s priority, the
higher its prob-
ability of being
throttled

The solver minimizes the objec-
tive function; violating the SLA
of a higher priority workload
will reflect as a higher value for

�$# (�� ����� !�� ��! 	  "!�
� ��� � !
Workloads in the
lucky or ex-
ceeded region
have a higher
probability of
being throttled

This is ensured by the �$������������ "!
variable in the objective function;
the lucky and exceeded have
a higher value compared to the
other regions (for example �� 8�8  38 � � 8��,4
8�8 � 3�� � � 6 � 4
=�� 3����

). It is
also possible to define �����,�����-���. "! as
a function.

Operating work-
loads closer to the
SLA boundary

This is ensured by the difference of
the current throughtput and SLA-
value in the objective function; it
is possible to assign a value func-
tion for workloads operating beyond
their SLA using a bimodal objec-
tive function (currently that value is
zero).

Table 1. Internals of the objective function.
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5 � "� 5�676>8 � �0� � ��� � &�&-: ��� ) 4
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(4)

where
� �.��� �

are the workloads sharing the storage con-
troller.

4.3 Workload unthrottling

CHAMELEON invokes the reasoning engine periodically,

to re-assess token issue rates; if the load on the system has
decreased since the last invocation, some workloads will be
unthrottled.

In CHAMELEON, the goal of unthrottling is to re-
distribute the unused bandwidth of the storage system based
on the priority values and the average I/O rates. If a work-
load is consistently wasting tokens issued for it (because it
has less significant needs), the additional tokens will be con-
sidered for re-distribution; on the other hand, if the work-
load is using all its tokens, they won’t be taken away from
it, no matter how low its priority is. Unthrottling decisions
are constructed using the same objective function, but with
additional “lower-bound” constraints such as not allowing
each I/O rate to become lower than its current average value.

4.4 Confidence value of the reasoning engine

The confidence value of the reasoning engine is based
on the accuracy of the models. Inaccuracies can stem
from errors due to curve-fitting, and also from trying to
use the models outside of the region(s) where they were
trained (residuals).

There are multiple statistical formulas to represent the
confidence values [15] . CHAMELEON uses the following
formula to capture both the errors due to regression and the
residuals.

%�� 3
%
� 8(: 8

� : ��� � ) �!& �� � � ) � � � (5)

where % is the standard error,
�

is the number of points used
for regression, and

�
is the mean values of the predictor

variables used for regression.
�
% � & represents the standard

deviation of the predicted value in predicting the value of 0 �using input variable
� � . In CHAMELEON, the confidence

value (  "! ) of a model is represented as the inverse of its

%�� .



The reasoning engine uses the component, workload,
and action models to make throttling decisions; the output
values are derived using a composition of models such that
the output of one is an input for the other i.e. � ���4�*� ����& &�& .
As such, the confidence value of the reasoning engine is ap-
proximated as  "! 4
5 � � 5 � 8 � 6  "!�� 5 � =�695 ��� 6  "! � 4  (<5 � .

5 Designer-defined Policies

The system designer defines heuristics as a coarse-
grained control mechanism, for deciding the workloads to
be throttled; this is required in scenarios where the pre-
dictions of the models cannot be relied upon (either dur-
ing bootstrapping or after significant system changes such
as hardware failures). For example, “a component is satu-
rated if its utilization is greater than 85%”, or “start throt-
tling workloads in the lucky region”, or “if the workload-
priority variance is less than 10%, uniformly throttle all
workloads sharing the component”. These heuristics can
be expressed in a variety of ways such as Event-Condition-
Action (ECA) rules or hard-wired code.

Coming up with useful throttling heuristics is a highly
complex problem [26], especially if they are to consider a
useful fraction of the solution space and to accommodate
priorities; this is an error-prone process that is sure to re-
sult in a brittle set of policies (especially with respect the
threshold values changes with the underlying physical con-
figuration).

In CHAMELEON, the designer-defined heuristics are im-
plemented as simple hard-wired code which is a modified
version of the throttling algorithm used in Sleds [8]:

1 Determine the components being used by the underper-
forming workload and generate a � ����� &

	��$�
.

2 For each component in the � ����� &
	��
�

, determine the non-
underperforming workloads using the component and
add them to the � ���� 	������ &

	��
�
.

3 Within the candidateList, order the workloads into groups
based on their current operating quadrant: lucky,
then exceed, then meet. Within each group, order
the workloads based on their priority values.

4 Traverse the � ���� 	�� ���� &
	��
�

and throttle each workload,
either uniformly or proportionally to its priority (the
higher the priority, the less significant the throttling).

6 Informed Feedback

Figure 8 shows the working of the feedback module.
The feedback module incrementally throttles workloads
based on the decisions of either the reasoning engine or the
system-designer heuristics (when the confidence value of
the reasoning engine is below a certain threshold value, say
30%). The step size for the incremental throttling is propor-
tional to the confidence value of the constraint solver or is a
small constant value while using designer heuristics.

Reasoning engine invoked

Confidence_val <
threshold

Executing system−designer
policies with constant
step−size

Y

Continue
throtting

Executing the reasoning
engine output with step−size
proportional to confidence
value

Incremental throttling

N

Re−calculate
throttle values

Analyze the system state
after m throttling steps

Figure 8. Working of the feedback module

After every
�

incremental throttling steps, the feedback
module analyzes the state of the system. If any of the fol-
lowing conditions is true, it re-invokes the reasoning en-
gine (otherwise it continues applying the same throttling
decisions in incremental steps):

� Latency increases for the underperforming work-
load (i.e., it moves away from the meet region).

� A non-underperforming workload moves from the
meet or exceed region to the lucky region.

� Any workload undergoes a 2X or greater variation
in the request-rate or any other access characteris-
tic (compared to the values at the beginning of throt-
tling).

� There is a 2X or greater difference between predicted
and observed response times for a component.

After the reasoning engine is invoked consecutively for
"

times and has a lower confidence value in each invoca-
tion, the feedback module discards the throttle values and
switches to the designer heuristics. There can be multi-
ple reasons for the above-mentioned conditions to be true:
component failures, application-level correlations between
workloads, unpredictable variations in the component be-
havior.

7 Experimental Evaluation

The experimental setup consists of a host machine gen-
erating multiple workload streams that are being served by
a storage infrastructure. The host is an IBM x-series 440
server (2.4GHz 4-way with 4GB memory running Redhat
Server 2.1 kernel); the back-end storage is a 24 drive RAID



1 LUN created on a IBM FAStT 900 storage controller (dual
HBA) with 512MB of on-board NVRAM. The host and the
storage controller are connected using a 2Gbps FibreChan-
nel (FC) link.

The IOs generation is controlled by a token-based leaky
bucket protocol i.e. a token is required to issue an IO re-
quest to the storage system. The number of tokens issued
to each workload stream is controlled by CHAMELEON that
is running on the host machine as a separate process. The
RAID 1 logical volume is mapped at the host as a raw de-
vice; as such there is no IO caching at the host-level.

The key capability of CHAMELEON is to regulate re-
source load so that SLAs are achieved. The experimen-
tal results use numerous combinations of synthetic and
real-world request streams to evaluate the effectiveness of
CHAMELEON; synthetic workloads are easier to handle
compared to their real-world counterparts that exhibit a
bursty and highly variable access characteristics. In addi-
tion to the effectiveness, we evaluate the computation com-
plexity of the constraint solver as a function of the number
of workloads.

7.1 Using synthetic workloads

The synthetic workload specifications used in this sec-
tion were derived from Minerva’s performance study [2].
Since the workloads are relatively static and controlled, the
models for action and workload have a small error rate. In
this experiment, the component model has

� 3�� ��� � , the
workload and action models with

����� � � . (
�

is the cor-
relation coefficient [15] and represents the accuracy of the
models; the closer r is to 1, the more accurate the models
are.)

These tests serve two objectives. First, they evaluate the
correctness of the decisions made by the constraint solver
i.e. the throttling decisions should take into account the
workload priorities, current operating point compared to the
SLA, and the percentage of load on the components gener-
ated by the workload. Second, the tests depict the effect of
model errors on the output values of the constraint solver
and how incremental feedback helps the system converge to
an optimal state.

Workload Request Read Write Sequential Footprint
Size
(KB)

Ratio Random
Ratio

Size
(GB)�
	

27.6 0.98 0.577 30���
2 0.66 0.01 60��
14.8 0.641 0.021 50���
20 0.642 0.026 60

Table 2. Synthetic workload streams

Test 1: Workloads with equal priorities

Figure 9 shows the latency and throughput values for the
four workloads / �.� / ��� /�� , and /�� running on the sys-
tem. Initially the system runs in uncontrolled phase (till

t=60 sec); in this phase workload / �
is violating its SLA

while other workloads such as /�� and /�� are above their
SLA. CHAMELEON calculates the new token issue rate for
each workload and executes them incrementally with a step-
size proportional to the confidence value (step-size in this
case is 12%). The settling time between each incremental
step is 60 sec. At time t = 300 sec, the system converges to
a state where no workload is violating its SLA.

The final state of the system can be represented in the
SLA quadrant(figure 10), where the arrows represent the
new operating point after throttling. Figure 10 compares
the system state that would have been achieved if the output
throttle values 1 of the reasoning engine were directly ex-
ecuted; the throttle values cause over-throttling with work-
load / �

operating much further in the meet region and no
workload in the exceed region. Over-throttling is caused
by model errors (in this case component model) where the
predicted latency used by the reasoning engine was higher
compared to the actual observed value.
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Figure 9. Throughput and latency values
for synthetic workloads with equal priorities.
Throttling of workloads starts at t=60 sec.

Test2: Effect of workload and quadrant priorities

Figure 11 compares the direct output of the constraint solver
with priority values for the workloads ( / � 3 �1� / � 38�� � /�� 3 �/� /�� 3 �

) and the SLA quadrants. Compared to
the no priority case, workload /�� is throttled more aggres-
sively. This is because the constraint solver internally uses
a greedy algorithm, throttling the lowest priority workload
before moving to the higher ones.

1The throttle values shown at the bottom of SLA quadrant figures represents the
percentage decrease in the token issue rate



 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

La
te

nc
y(

%
)

IOps(%)(t1=0,t2=0,t3=33.87%,t4=29.17%)

w1

w2

w3

w4

 0

 0.5

 1

 1.5

 2

 0

La
te

nc
y(

%
)

IOps(%)(t1=0,t2=0,t3=65.98%,t4=10.02%)

w1

w2

w3

w4

0

0.5

1

1.5

2

0 0.5 1 1.5 2

La
te

nc
y(

%
)

IOps(%)(t1=0,t2=64.18%,t3=33.86%,t4=10.01%)

w1

w2
w3

w4

Equal priority Workload priorities Quadrant priorities

Figure 11. Effect of priority values on the output of the constraint solver.
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Test 3: Usage of the component by the workload

This test is a sanity check with workload / �
operating pri-

marily from the controller cache (not using the disk band-
width). To solve the SLA violation for workload / �

, the
reasoning engine shouldn‘t select / �

for throttling even if/ �
has the lowest priority. The throttling decision made by

CHAMELEON is as shown in figure 12 which indicates the
reasoning engine selects / �

and / � .
7.2 Using real-world workload trace replay

In these experiments, we replay the real-world workload
for SPC web-search [10] and HP’s Cello96 2 traces. Cello96
was collected from a departmental fileserver over the period
from 9 September to 29 November 1996. Both these traces

2http://tesla.hpl.hp.com/public software
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Figure 12. Sanity test for the reasoning engine
(workload / �

operating from controller cache

are block-level with timestamps recorded for each IO re-
quest. The trace duration for SPC is around 6 hours while
that for Cello96 is 1 day long. To generate a reasonable IO
load for the storage infrastructure, the SPC traces were re-
played 40 times faster and the cello traces were replayed 10
times faster.

For these tests, in addition to the SPC and Cello96 traces,
a phased synthetic workload was used; this workload is as-
signed the highest priority. In an uncontrolled case i.e. with-
out throttling, with three workloads running on the system,
one or more of them violate their SLA. Figure 13 shows the
throughput and latency values for uncontrolled case. The
horizontal line in the delay figures represents the SLAs for
each workload. As we can see from the figure, when the
synthetic workload is turned on, the SLA on latency were
violated.

The aim of the tests is to evaluate the following:
� The throttling decisions made by CHAMELEON for

converging the workloads towards their SLA.
� The reactiveness of the system with throttling and peri-

odic unthrottling of workloads (under reduced system
load).

� The handling of unpredictable variations in the sys-
tem that cause errors in the model predictions, forcing
CHAMELEON to use the sub-optimal but conservative
designer-defined policies.

For these experiments, the models were reasonably ac-
curate (component

� 3 � � � � , workload
� 3 � � � , and ac-
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Figure 13. Uncontrolled throughput and la-
tency values for real-world workload traces

tion
� 3 � � � ).In addition, the SLAs for each workload are:

Cello96 1000 IOPS with 8.2ms latency, SPC 1500 IOPS
with 6.5 ms latency and 1600 IOPS with 8.6ms latency for
the synthetic workload unless otherwise specified.

Case 1: Solving SLA violation using throttling

The behavior of the system is shown in figure 14. To explain
the working of CHAMELEON, we divide the time-series into
phases described as follows:

Phase 0 (t=0 to t=5 min): Only the SPC and Cello96 traces
are running on the system; the latency values of both
these workloads is significantly below the SLA.

Phase 1 (t= 5 min to t= 13 min): The phased synthetic
workload is introduced in the system. This causes an
SLA violation for the Cello96 and synthetic traces.
CHAMELEON triggers the throttling of the SPC and
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Figure 14. Throughput and latency values
for real-world workload traces with throttling
(without periodic unthrottling)

Cello96 workloads (Cello96 is also throttled because
it is operating in the exceeded region, means it is send-
ing more than it should. Therefore, it is throttled even
its SLA latency goal is not met). The system uses
a feedback approach to move along the direction of
the output of the constraint solver. In this experiment,
the feedback system starts from 30% of the throttling
value and uses step size is 8%. (30% and 8% are de-
cided according to the confidence value of the models).
It took the system 6 minutes to meet the SLA goal and
the feedback stops.

Phase 2 (t=13 min to t= 20 min ): The system stabilizes
after the throttling and all workloads can meet their
SLAs.

Phase 3 (t=20 min to t= 25 min ): The synthetic workload
enters the OFF phase. During this time, the load on the
system is reduced, but the throughput of Cello96 and



SPC remains the same.

Phase 4 ( beyond t= 25 min): The system is stable, with all
the workload meeting their SLA. A side-point is that at
around t=39 min, the throughput of Cello96 decreases
further; this is because of the inherent trace character-
istics.

Figure 14 shows the effectiveness of the throttling: all
workloads can meet their SLA after throttling. However,
because the lack of unthrottling scheme, throttled work-
loads have no means to increase their throughput even when
tokens are released by other workloads. Therefore, the sys-
tem is underutilized.

Case 2: Side-by-side Throttling and Unthrottling of
workloads

Figure 15 shows throttling of workloads with periodic un-
throttling (every 60 sec) during reduced system loads. In
comparison to Figure 14, there are four interesting observa-
tions:

� First, the behavior of system during the off phase of
the synthetic workload (t=17 min to t=27 min). In this
duration, the system load is reduced that triggers un-
throttling of the SPC and Cello96 workloads. Unthrot-
tling is based on workload priorities and the average
IO demand of the individual workload streams. The
SPC and Cello96 grab more tokens and are sending
out accumulated requests due to limited tokens when
the synthetic workload is on.

� Second, the settling time required to throttle the SPC
and Cello96 workloads, whenever the synthetic work-
load gets into the on phase (t= 27 min to t=37 min,
t=47 min to 50 min). Compared to the throttling-only
scenario, the throughput and latency variations of the
system are higher, taking a longer time to stabilize.

� Third, the constraint solver made a different throttling
decision from Case 1: Cello96 was not throttled. This
is because when the reasoning engine is triggered, the
Cello96 was sending less than its SLA IOPS and was
not meeting its SLA latency goals (t=9 min). As a re-
sult, both Cello96 and the synthetic workload were op-
erating in the failed region, therefore, the reasoning
engine will not throttle Cello96 as in Case 1 and only
SPC was throttled.

� Fourth, between t=10 min to t=13 minutes, reasoning
engine was triggered twice. This is because all work-
loads met their SLA goals after the first throttling (t=11
min) and the feedback stops. However, at t=12 min,
SLAs for Cello96 and the synthetic workloads were
violated again, a second call on reasoning engine was
triggered and SPC was throttled again. After t=13 min,
the system was stabilized.
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Figure 15. Throughput and latency values for
real-world workload traces with throttling and
periodic unthrottling

Case 3: Handling changes in the confidence value of the
models at run-time

This test demonstrates how CHAMELEON caters to change
in confidence value of the models at run-time; this change
can be due to unpredictable system variations (hardware
failures) or un-modeled properties of the system (such as
changes in the workload access characteristics that change
the workload models). It should be noted that refining the
models to reflect the changes will not be instantaneous; in
the meantime, CHAMELEON should have the ability to de-
tect a fall in the confidence value and switch to a conserva-
tive management mode (using designer-defined policies or
generate a log message for a human administrator).

Figure 16 show the reaction of the system when the
access characteristics of the SPC and Cello96 workloads
are synthetically changed such that the cache hit rate of
Cello96 increases significantly (in reality, a similar scenario



arise due to changes in the cache allocation to individual
workload streams sharing the controller) and the SPC is do-
ing more random access (sequential random ratio increases
from 0.11 to 0.5). In the future, we plan to run experiments
with hardware failures induced on the RAID 1 logical vol-
ume.

The SLAs used for this test are: Cello96 has a SLA with
1000 IOPS with 7ms latency, SPC is 2000 IOPS with 8.8ms
latency and the synthetic workloads has a SLA with 1500
IOPS and 9ms latency.
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Figure 16. Handling a change in the confi-
dence value of the models at run-time

Phase 0 (at t= 3 mins): The synthetic workload violates
its latency SLA. In response, CHAMELEON decides to
throttle the Cello96 workload (using the original work-
load model). The output of the reasoning engine as a
confidence value of 65%

Phase 1 (t= 3 min to t = 13 min): The feedback mod-
ule continues to throttle for 3 consecutive increments;

since the latency of the synthetic workload does not
change, it re-invokes the reasoning engine. The out-
put of the reasoning engine is similar to the previous
invocation (since the models haven‘t changed), but its
confidence value is lower (because of the higher differ-
ences between predicted and observed model values).
This repeats for consecutive invocations of the reason-
ing engine after which the feedback module switches
to use the designer-defined policies.

Phase 2 (t= 13 min to t=17 min): A simple designer
policy the CHAMELEON uses is to throttle all the
non-violating workloads uniformly (uniform pruning).
Both SPC and Cello96 are throttled in small steps (5%
of their SLA IOPS) till the latency SLA of the syn-
thetic workload is satisfied.

Phase 3 (beyond t= 17min): All workloads are meeting
their SLA goals and the system is stabilized.

7.3 Computational complexity of the reasoning
engine

The current implementation of CHAMELEON uses a
piece-wise linear programming approach for constraint
solving. The computational complexity of the constraint
solver is a function of the number of variables involved.
Figure 17 shows the amount of time CHAMELEON takes to
generate the answer. This experiment was run on a P4 2.8
Ghz machine with 512MB memory.
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Figure 17. Computational complexity of the
reasoning engine

7.4 Discussion of the experimental results

We were pleased that in our experiments, CHAMELEON
was able to automatically execute throttling procedures that
moved the system to its optimal state as defined by the value
function. In all cases the right workloads were throttled and
the amount of the throttling was the minimum needed to
meet the targets. With our current system and for the work-
load perturbations we imposed, we saw reaction times be-
tween 3 and 12 minutes. While this is not instantaneous,
it is almost certainly quicker than a human could react (no-
tice the problem, decide what to do, execute) and also al-
most certainly more precise in execution (got to exactly the



right place). Unthrottling was similarly successful, releas-
ing constraints when load on the high priority workloads
decreased; it introduces an additional delta to the settling-
time which is dependent on how proactively the token are
issued and recovered. Again, we believe our reaction times
were better than human-capable at 14 minutes. Thus, we
are achieving the goals of allowing full hardware utilization
when all workloads are meeting responsiveness require-
ments and we were able to appropriately restrain the lower
priority or greedy ones when system limits were reached.

8 Related work

In rule-based systems, system administrators encode
policies as sets of event-condition-action rules [28, 14] that
fire when some precondition (typically, one or more sys-
tem metrics going beyond a predetermined threshold) is
satisfied. Most current commercial tools for automatic re-
source allocation (e.g., BMC Patrol [5]) belong to this cat-
egory. Rules are a clumsy, error-prone programming lan-
guage; they front-load all the complexity into the work of
creating them, in exchange for simplicity of execution at
run time. Administrators are expected to create rules that
account for all relevant system states, to know which cor-
rective action to take in each case, to specify useful values
for all the thresholds that determine when rules will fire,
and to make sure that the intended rule will fire if precondi-
tions overlap. Since all this work has to be done in advance
and with minimum quantitative information about the sys-
tem, and simple policy changes may translate into modi-
fications to a large number of rules, this approach is un-
likely to significantly improve manageability and accuracy
of response. Rule-based systems can only provide a coarse-
grained optimization, as good as the human who wrote the
rules. In contrast, CHAMELEON relies on constraint-solving
algorithms that explore the entire search space of throttle
values for each workload. Instead of relying on hardwired
thresholds, CHAMELEON uses its dynamic models to make
optimization decisions that admit iterative refinement. A
variation [29], based on case-based reasoning, relies on it-
erative refinement to derive rules from a tabula rasa initial
knowledge base. This approach does not scale well to real
systems, because of the exponential size of the search space
that is explored in an unstructured way.

Feedback-based approaches use a narrow window of the
most recent performance samples to make allocation deci-
sions based on the difference between the current and de-
sired system states. They are not well-suited for decision-
making with multiple variables [23], and can keep thrashing
between local optima. from Façade [19] controls the queue
length at a single storage device. If there is a QoS violation,
Façade decreases the target queue length, doing the equiva-
lent of throttling the combination of all workloads down to
the current request rate of the device; unlike CHAMELEON,
it does not make complex decisions about which subset of
the workloads should be left alone. Under overload condi-
tions Façade will reduce its target queue length all the way
down to 1, thus disallowing internal optimizations in the

storage device and getting poor performance; CHAMELEON
will provide differentiated service by throttling the low-
priority workloads. Triage [18] keeps track of which per-
formance band the system is operating in; it shares Façade’s
lack of selectivity, as a single QoS violation may bring the
whole system down to a lower band (which is equivalent to
throttling every workload). Sleds [8] can selectively throt-
tle just the workloads supposedly responsible for the QoS
violations, and has a decentralized architecture that scales
better than Façade’s. However, the policies for deciding
which workload to throttle are hard-wired and will not adapt
to changing conditions. Hippodrome [4] fine-tunes the ini-
tial data placement iteratively. Given the high cost of each
data migration, it can take a long time to converge and may
get stuck in local minima as it relies on a variation of hill-
climbing.

Scheduling-based approaches establish relative priori-
ties between workloads and individual I/Os. Jin et.al. [16]
compare different scheduling algorithms for performance
isolation and resource-usage efficiency; their experimental
results show that scheduling is effective but cannot ensure
tight bounds on the SLA constraints (which is especially re-
quired for high-priority workloads). Stonehenge [13] uses
a learning-based bandwidth allocation mechanism to map
SLAs to virtual device shares dynamically; although it al-
lows more general SLAs than CHAMELEON, it can only ar-
bitrate accesses to the storage device, not to any other bot-
tleneck component in the system. In general, scheduling
approaches are designed to optimize for the common case,
and may not be effective in handling exception scenarios
such as hardware failures.

Model-based approaches depend on accurate models of
the storage system in order to make decisions. Minerva [2]
assumes that models are given—but system administrators
very rarely have that level of information about the devices
they use. Polus [26] proposes to build those models on the
fly; CHAMELEON is an intermediate step towards the full
Polus vision. The main challenge in this category is to ac-
quire robust, accurate models—far from trivial for practical
systems.

9 Conclusions

An ideal solution for resource arbitration in shared stor-
age systems would adapt to changing workloads, client re-
quirements and system conditions. It would also relieve
system administrators from the burden of having to spec-
ify when to step in and take corrective action, and what ac-
tions to take—thus allowing them to concentrate on specify-
ing the global objectives that maximize the storage utility’s
business benefit, and having the system take care of the de-
tails. No existing solution satisfies these criteria; prior ap-
proaches are either inflexible, or require administrators to
supply up-front knowledge that is not available to them.

Our approach to identifying which client workloads
should be throttled is based on constrained optimiza-
tion. Constraints are derived from the running system,
by monitoring its delivered performance as a function



of the demands placed on it during normal operation.
CHAMELEON’s approach to model building results in a so-
lution that requires no prior knowledge about the quantita-
tive characteristics of workloads and devices—and that can
make good decisions even in the presence of realistic sce-
narios, like those involving workloads with relative priori-
ties. The objective function being optimized can be defined,
and changed, by the administrator as a function of organi-
zational goals. Given that the actions prescribed by our rea-
soning engine are only as good as the quality of the models
used to compute them, CHAMELEON will switch to a con-
servative decision-making process if insufficient knowledge
is available.

We replayed traces from production environments on
a real storage system, and found that CHAMELEON
makes very accurate decisions for the workloads examined.
CHAMELEON always made the optimal throttling decisions,
given the available knowledge. The times to react to and
solve performance problems were in the 3-14 min. range,
which is quite encouraging.

As areas for future work, first, we can improve the qual-
ity of model representations and the processes used to build
them: component models could account for phased work-
loads and accurate interleaving, and workload models could
incorporate additional workload characteristics such as tem-
poral locality (and even incorporate some degree of predic-
tion using techniques related to ARIMA [24]). Second, the
reasoning engine could be based on a more general type
of optimization, e.g., use non-linear programming for the
constraint solver as supported by OPT++ [20]. Finally,
we could account for a variety of additional real-world as-
pects: preventing over-fitting in models, avoiding oscilla-
tions or ping-pong effects, or even generating explanations
for the administrator for the throttling decisions made by
CHAMELEON.
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