
 1568933925

1

Abstract— Today's packet classification systems are designed to
provide the highest priority matching result, e.g., the longest
prefix match, even if a packet matches multiple classification
rules. However, new network applications, such as intrusion
detection systems, require information about all the matching
results. We call this the multi-match classification problem. In
several complex network applications, multi-match classification
is immediately followed by other processing dependent on the
classification results. Therefore, classification should be even
faster than the line rate. Pure software solutions cannot be used
due to their slow speeds.

In this paper, we present a solution based on Ternary Content
Addressable Memory (TCAM), which produces multi-match
classification results with only one TCAM lookup and one SRAM
lookup per packet— about ten times fewer memory lookups than
a pure software approach. In addition, we present a scheme to
remove the negation format in rule sets, which can save up to
95% of TCAM space compared with the straight forward
solution. We show that using the pre-processing scheme we
present, header processing for the SNORT rule set can be done
with one TCAM and one SRAM lookup using a 135KB TCAM.

Index Terms—Packet Classification, Multi-Match Packet
Classification, Ternary CAM, Negation Removing.

I. INTRODUCTION
ew network applications are emerging that demand multi-
match classification, that is, requiring all matching results
instead of only the highest priority match. One example

of such an application is the network intrusion detection
system, which monitors packets in a network and detects
malicious intrusions or DOS attacks. Systems like SNORT
[1], employ thousands of rules. Figure 1.a gives an example
SNORT rule that detects a MS-SQL worm probe. Figure 1.b is
a rule for detecting an RPC old password overflow attempt.

Each rule has two components: a rule header and a rule
option. The rule header is a classification rule that consists of
five fixed fields: protocol, source IP, source port, destination
IP, and destination port. The rule option is more complicated:
it specifies intrusion patterns to be used to scan packet

This work was supported in part by the UC Micro grant number 03-041and
02-032 with matching support from NTT MCL, HP, Cisco, and Microsoft.

Fang Yu and Randy H. Katz are with the Electrical Engineering and
Computer Science Department, University of California Berkeley, Berkeley,
CA 94720 (phone: 510-642-8284; e-mail: {fyu, randy}@ eecs.berkeley.edu).

contents. Rule headers may have overlaps, so a packet may
match multiple rule headers (e.g., both examples above).
Multi-match classification is used to find all the rule headers
that match a given packet so that we can check the
corresponding rule options one by one later.

Rule Headerudp $EXTERNAL_NET any
-> $HOME_NET 1434

content:"|04|"; depth:1;
content:"|81 F1 03 01 04

9B 81 F1 01|";
content:"sock";
content:"send"

Rule Option

udp $EXTERNAL_NET any -
> $HOME_NET any

content:"|00 01 86 A9|";
offset:12; depth:4;

content:"|00 00 00 01|";
distance:4; within:4;

byte_jump:4,4,relative,align;
byte_jump:4,4,relative,align;
byte_test:4,>,64,0,relative;

content:"|00 00 00 00|";
offset:4; depth:4; sid:2027;

rev:4;

1.a: A rule for MS-SQL
Worm detection.

1.b: A rule for RPC old
password overflow attempt

Fig. 1. Snort rule examples.

Another application is programmable network elements
(PNEs) [2, 3] proposed for implementing edge network
functions. Typically, a packet traverses a number of network
devices that perform different functions, e.g., firewall, HTTP
load balancing, intrusion detection, NAT, etc. This can be
highly inefficient because a packet has to traverse every
device even if only a subset of them needs to operate on the
packet contents. In addition, because each network device is
separately built, common functions like classification are
repeatedly applied. This wastes resources and induces extra
delay. To address this problem, PNEs are evolving to support
multiple functions in one device. Multi-match classification is
one important building block in PNEs: when a packet first
enters a PNE, it is classified to identify the relevant functions.
Then, only those selected functions will be applied, which
saves resources and increases processing speed.

As we can see from the above two applications, multi-
match classification is usually the first step in performing
complex network system functions followed by processing
that is dependent on the classification results. Applications
that require only single-match classifications, however, tend to
have further processing that is also simple (e.g., go to a
specific port, or drop a packet, etc.). Therefore, to maintain
the same line rate, multi-match classification must be much
faster than single-match to leave enough time for subsequent
processing without increasing latency too much.

Efficient Multi-Match Packet Classification
with TCAM

Fang Yu and Randy H. Katz

N

 1568933925

2

The single-match problem on multiple fields is complex [4].
For n arbitrary non-overlapping regions in F dimensions, it is
possible to achieve an optimized query time of O(log(n)),
with a complexity of O(nF) storage in the theoretical worst
case [5]. However, real-world rule sets are typically simpler
than the theoretical worst case, and heuristic approaches [6, 7,
8, 9] provide faster solutions, e.g., 20-30 memory accesses per
packet in the “worst case”.

The multi-match classification problem is more complex to
implement than single-match classification since it needs all
the matching results. Thus, some of the heuristic optimizations
used for the single-match classification do not apply for the
multiple-match case. Pure software solutions for multi-match
classification are expected to take longer than that for single-
match classification. Furthermore, multi-match classification,
because of the complex follow-up processing, is likely to have
much tighter time requirements. Hence pure software
solutions, which require tens of memory access, are
insufficient. Instead, we need a solution that requires few
memory lookups, with deterministic lookup time for any input
to keep up with the high data rate.

In this paper, we present a scheme that provides a solution
for the multi-match problem with two memory lookups: one
using a Ternary Content Addressable Memory (TCAM), a
type of memory that can do parallel search at high speed, and
the other using a standard Static Random Access Memory
(SRAM). Our solution can save 95% of TCAM space
compared with the straight forward solution. Using our
scheme, header processing for the SNORT rule set can be
done with one TCAM and one SRAM lookup using a 135KB
TCAM.

The remainder of the paper is organized as follows: we will
begin by exploring some design choices and technical
challenges in Section 2. Section 3 and 4 present our solution
to the multi-match classification problem with TCAM. Finally
we present simulation results in Section 5 and conclude in
Section 7.

1 0 0 0

0 1 1 0

1 0 X X

Match1 0 0 X

Input

TCAM

Rule 1
Rule 2, 3

Rule 3

SRAM
Match list

1
2

3

n

1st entry

 nth entry

Fig. 2. TCAM

II. MOTIVATION AND TECHNICAL CHALLENGES
A TCAM consists of many entries, the top entry of the

TCAM has the smallest index and the bottom entry has the
largest. Each entry has several cells that can be used to store a

string. A TCAM works as follows: given an input string, it
compares the string against all entries in its memory in
parallel, and reports the “first” entry that matches the input.
The lookup time (5 ns or less) is deterministic for any input.
Unlike a binary CAM, each cell in a TCAM can take one of
three states: 0, 1, or ‘do not care’ (X). With ‘do not care’
states, a TCAM can support matching on variable prefix
CIDR IP addresses and thus can be used in high-speed IP
lookups [10, 11]. Also because it has ‘do not care’ states, one
input may match multiple TCAM entries. In this paper, we
assume the use of the widely-adopted first-match TCAM,
which gives out the lowest index match of the input string if
there are multiple matches as shown in Figure 2.

To solve the multi-match classification problem with
TCAM, there are two challenges to be tackled: rule ordering
and negation representation.

Challenge 1: Arrange rules in TCAM compatible order
Currently, the commercially available TCAM reports only

the first matching result if there are multiple matches. This
type of TCAM cannot directly report multi-match result. If we
can change the TCAM hardware and let it return a bit vector
of all matching results, one bit per entry, it still doesn’t solve
the problem. This is because we still need to process the bit
vector and extract the matching result, the complexity is still
O(n). In the reminder of the paper, we use a first match
TCAM.

Rules can have different relationships such as subset,
intersection, and superset. These relationships can cause
problems for the matching results given a first-match TCAM.
For example, suppose we have the following two rules:

(a) “Tcp $SQL_SERVER 1433 →$EXTERNAL_NET any”
(b) “Tcp Any Any → Any 139”

If we put rule (a) before rule (b) in the TACM, a packet
matching both rules will report a match of (a) and never report
(b), and vice versa. This is because rule (a) and (b) have an
intersection relationship. Hence, we need an algorithm to add
additional rules into the rule sets and order the rules in a
specific way to avoid the above problem. We call such an
ordering a “TCAM compatible order”, which means: when a
packet is compared with rules according to this order, we can
retrieve all matching results solely based on the first matched
rule. There should be no need to check the successive rules.

Challenge 2: Representing Negation with TCAM
The negation (!) operation is common in rule sets. For

example, if we wish to find packets that are not destined to
TCP port 80, we will use a rule “tcp any any → any !80”.
The 16-bit binary form of 80 is 0000 0000 0101 0000. There
is no direct way to map the negation into one TCAM entry. If
we directly flip every bit over, 1111 1111 1010 1111 stands
for 65375, which is only a subset of !80. To represent the
whole range of !80, we need 16 TCAM entries as shown in
Figure 3. The basic approach flips one bit in one of the 16

 1568933925

3

binary positions and puts ‘do not care’ to all the others.
1xxx xxxx xxxx xxxx

x1xx xxxx xxxx xxxx

xx1x xxxx xxxx xxxx

xxx1 xxxx xxxx xxxx

xxxx 1xxx xxxx xxxx

xxxx x1xx xxxx xxxx

xxxx xx1x xxxx xxxx

xxxx xxx1 xxxx xxxx

xxxx xxxx 0xxx xxxx

xxxx xxxx x1xx xxxx

xxxx xxxx xx0x xxxx

xxxx xxxx xxx1 xxxx

xxxx xxxx xxxx 1xxx

xxxx xxxx xxxx x1xx

xxxx xxxx xxxx xx1x

xxxx xxxx xxxx xxx1

Fig. 3. Binary representation of !80 in TCAM

In addition to port negation, some rules require subnet
addresses to be negated. For example, $EXTERNAL_NET
frequently appears in rule sets, where $EXTERNAL_NET =
!$HOME_NET. To represent this in TCAM directly, we need
to flip every bit in the prefix of $HOME_NET and put ‘do not
care’ to the other positions. Because IP subnet addresses are
32 bits, each negated address costs up to 32 TCAM entries.
Moreover, there could be several negations in one rule. For
example, the rule “tcp $EXTERNAL_NET any →
$EXTERNAL_NET !80” requires up to a total of
32*32*16=16384 TCAM entries for this single rule! This is
obviously not an acceptable approach since TCAMs have a
much smaller capacity than SRAMs (e.g., 2MB with current
technology).

The next two sections describe our approach to addressing
these technical challenges.

III. CREATE RULE SETS IN TCAM COMPATIBLE ORDER
To obtain multi-match results in one lookup with a first-

match TCAM, we need to identify intersections between rules.
Studies in [4, 12] show that the number of intersections
between real-world rules is significantly smaller than the
theoretical upper bound because each field has a limited
number of values (e.g., all known port numbers) instead of
unconstrained random values. So maintaining all the
intersection rules is feasible. Indices of the rules used to
generate the intersection are stored in a list. We call this a
“Match List” and store the list in SRAM. Given a packet, we
first perform a TCAM lookup and then use the matching index
to retrieve all matching results with a secondary SRAM
lookup as shown in Figure 2. The extended rules plus the
original rules form an extended rule set. Throughout the
remainder of this paper, a “rule” refers to a member of the
extended rule set, unless otherwise specified as a member of

the original rule set. The items in the match list are the indices
of rules in the original rule set.

As defined in Section 2, the TCAM compatible order
requires rules to be ordered so that the first match should
record all the matching results in the match list. We first
enumerate the relationships between any two different rules Ei
and Ej, with match list Mi and Mj. There are four cases:
exclusive, subset, superset, and intersection, each with
following corresponding requirements:

1. Exclusive (Ei ∩ Ej,=φ): then i and j can have any order.

2. Subset (Ei ⊆ Ej): then i<j and Mj ⊆ Mi .

3. Superset (Ej ⊂ Ei): then j<i and Mi ⊆ Mj .

4. Intersection (Ei ∩ Ej ≠ φ): then there is a rule El =
(Ei ∩ Ej) (l<i, l<j), and (Mi ∪ Mj) ⊆ Ml.

Case 1 is trivial: if Ei and Ej are disjoint, they can be in any
order since every packet matching Ei never matches Ej. For
Case 2 where Ei is a subset of Ej, every packet matching Ei
will match Ej as well, so Ei should be put before Ej and match
list Mi should include Mj. In this way, packets first matching
Ei will not miss matching Ej. Similar operations are required
for Case 3. Besides these three cases, partially overlapping
rules lead to Case 4. In this case, we need a new rule El
recording the intersection of these two rules (Ei ∩ Ej) placed
before both Ei and Ej with both match results included in its
match list (Mi ∪ Mj) ⊆ Ml). Note that the intersection of Ei

and Ej may be further divided into smaller regions by other
rules (e.g., Ek in Figure 4). In this case, all the smaller regions
(Ei ∩ Ej and Ei ∩ Ej ∩ Ek) have to be presented before both Ei

and Ej. This can actually be deduced by requirement (4).

iE
iE

jE

kE

jE

ji EE ∩ ki EE ∩kji EEE ∩∩

Fig. 4. An example of intersections of three rules.

Cases 1 to 4 cover all the possible relationships between
any two rules. By applying the corresponding operations
talked above, we can meet the requirements and get a TCAM
compatible order.

Figure 5 is the pseudo-code for creating a TCAM
compatible order. The algorithm takes the original rule set
R={R1, R2, …., Rn} as the input. Each rule Ri is associated with
a match list, which is an index of itself ({i}). The algorithm
outputs an extended rule set E in TCAM compatible order.
The algorithm inserts one rule at a time into the extended rule
set E, which is initially empty (the empty set obviously
follows the requirements of TCAM compatible order). Next,
we show that after each insertion, E still meets the
requirements. Insert(x, E) is the routine to insert rule x into E.

 1568933925

4

It scans every rule Ei in E and checks the relationship between
Ei and x. If they are exclusive, then we bypass Ei. If Ei is a
subset of x, we just add match list Mx to Mi and proceed to the
next rule. If Ei is a superset of x, we add x before Ei according
to requirement (3) and ignore all the rules after Ei (see the
proof in the appendix). Otherwise, if they intersect, then
according to requirement (4), a new rule Ei ∩ x is inserted
before Ei if it is not already been added. The match list for the
new rule is Mx ∪ Mi. As you can see, we strictly follow the
four requirements when adding every new rule, so the
generated extended rule set E is in TCAM compatible order.
Due to space limitations, we do not present the details of the
deletion algorithm.
__

extend_rule_set(R){
E=φ ;
for all the rule Ri in R

 E=insert(Ri, E);
return E;

}
insert(x, E){
 for all the rule Ei in E {
 switch the relationship between Ei and x:
 case exclusive:
 continue;
 case subset:
 Mi = Mx ∪ Mi;
 continue;
 case superset:
 Mx = Mx ∪ Mi;
 add x before Ei ;
 return E;
 case intersection:
 if (Ei ∩ x ∉E and Mx ⊄ Mi)

add t = Ei ∩ x before Ei ;
 Mt = Mx ∪ Mi ;
 }
 add x at the end of E and return E;
}
__

Fig. 5. Code for generating TCAM compatible order.

 Original Rule Set
1 Tcp $SQL_SERVER 1433 → $EXTERNAL_NET any
2 Tcp $EXTERNAL_NET 119 → $HOME_NET Any
3 Tcp Any Any → Any 139

Table 1. Example of original rule set with 3 rules.

Extended Rule Set Match
List

Tcp $SQL_SERVER 1443 →$EXTERNAL_NET 139 1,3
Tcp $SQL_SERVER 1433 →$EXTERNAL_NET any 1
Tcp $EXTERNAL_NET 119 →$HOME_NET 139 2,3
Tcp $EXTERNAL_NET 119 → $HOME_NET any 2
Tcp any any → any 139 3

Table 2. Extended rule set in TCAM compatible order.

To illustrate the algorithm, let’s look at the following
example in Table 1 which contains three rules. To generate
extended rule set E, first we insert rule 1. Rule 2 does not

intersect with rule 1 so it can be added directly. Now, we have
rule 1 followed by rule 2. When inserting rule 3, we find that
it intersects with both rule 1 and rule 2, so we add two
intersection rules with match list {1, 3} and {2, 3} and put
rule 3 at the bottom of the TCAM. The final extended rule set
E is presented in Table 2.

IV. NEGATION REMOVING
 The scheme presented in Section 3 can be used to generate

a set of rules in TCAM compatible order. In this section, we
describe how to insert them into TCAM. As explained before,
each cell in the TCAM can take one of three states: 0, 1 or ‘do
not care’. Hence, each rule needs to be represented by these
three states.

Usually, a rule contains IP addresses, port information,
protocol type, etc. IP addresses in the CIDR form can be
represented in the TCAM using the ‘do not care’ state.
However, the port number may be selected from an arbitrary
range. Liu [11] has proposed a scheme to efficiently solve port
range problem. However, we don’t use it here because it
requires two additional memory lookup and SNORT rule set
doesn’t contain a huge number of ranges. We just directly
map range into TCAM using multiple entries, e.g., port 2-5 is
represented as 01* and 10*. A more complicated problem for
the TCAM is that some IP and port information is in a
negation form. As explained in Section 2, each negation
consumes many TCAM entries, so in this section, our goal is
to remove negation from the rule set to save TCAM space.

Before we present our scheme, let us first look at the
combinations of source and destination IP address spaces as
shown in Figure 6. Use the rule set in Table 1 as an example,
rule 3 applies to all 4 regions since it is “any” source to “any”
destination; rule 1 applies to region D because we assume
$SQL_SERVER is inside $HOME_NET; and rule 2 applies to
region A. The regions that contain negation
($EXTERNAL_NET) are region A ($EXTERNAL_NET to
$HOME_NET), D ($HOME_NET to $EXTERNAL_NET),
and B ($EXTERNAL_NET to $EXTERNAL_NET).

C

A

D

B

Home Net

Home Net External Net

External Net

Rule 3

Rule 2, 3

Rule 1, 3

Rule 3

Source IP

Destination IP

Fig. 6. Source and destination IP addresses space.

Consider region A as an example: the rules in this region
are in the form of “* $EXTERNAL_NET * →$HOME_NET+
*”. Note that * means it could be any thing (e.g. “tcp” or
“any” or a specific value). $HOME_NET+ stands for

 1568933925

5

$HOME_NET and any subset of it such as $SQL_SERVER.
If we can extend rules in region A to region A and C, we can
replace $EXTERNAL_NET with keyword “any” and now
rules are in the format of “* any * →$HOME_NET+ *”.
However, after extending the region, we change the semantics
of the rule and this may affect packets in region C. In other
words, a packet in the format of “* $HOME_NET * →
$HOME_NET+ *” will report a match of this rule as well.

This problem, however, is solvable because TCAM only
reports the first matching result. With this property, we can
first extract all the rules applying to region C and put those at
the top of TCAM. Next, we add a separator rule between
region C and region A: “any $HOME_NET any →
$HOME_NET any” with an empty action list. In this way, all
the packets in region C will be matched first and thus ignore
all the rules afterwards. With this separator rule, we can now
extend all the rules in region A to region A and C. Similarly,
rules in region D can be extended to region C and D, rules in
region B can be extended to region A, B, C, and D. Therefore,
we will put all the rules in the following order:

Rules in region C: “* $HOME_NET+ * →$HOME_NET+ *”
Separator rule 1: “any $HOME_NET any →$HOME_NET

any”
Rules in region D, specified in the form of region C and D:
“* $HOME_NET+ * →any *”
Rules in region A, specified in the form of region A and C:
“* any * →$HOME_NET+ *”
Separator rule 2: “any $HOME_NET any → any any”
Separator rule 3: “any any any →$HOME_NET any”
Rules in region B, specified in the form of region A, B, C and

D: “* any * →any *”

Putting extended rule sets in this order can be simply
achieved by first adding all three separator rules to the
beginning of the original rule set, then following the algorithm
in Section 2. If a rule applies to region A, it will automatically
intersect with the separator 1, and generate a new rule in
region C. If a rule applies in region B, it will intersect with all
three separators and create three intersection rules. After that,
we can replace all the $EXTERNAL_NET references with the
keyword “any”.

TCAM
Index

TCAM entries Match
list

1 tcp $HOME_NET any →$HOME_NET 139 3
2 any $HOME_NET any →$HOME_NET any
3 tcp $SQL_SERVER 1433 → any 139 3, 1
4 tcp $SQL_SERVER 1433 → any any 1
5 tcp any 119 → $HOME_NET 139 2,3
6 tcp any 119 →$HOME_NET any 2
7 tcp any any →any 139 3

Table 3. Extended rule set in a TCAM with no negation.

Table 3 shows the result of mapping the rule set of Table 1
into TCAM. The first rule in region C is extracted from rule 3

that applies to all four regions. The second rule is a separator
rule. With these two rules, we can replace the
$EXTERNAL_NET in rules 3-6 with keyword “any”. At the
end, there is rule 7 which applies to all the regions. Separator
rules 2 and 3 are omitted because no rule is in the form of
$EXTERNAL_NET to $EXTERNAL_NET in the original
rule set. In this example, by adding only two rules, we can
completely remove the $EXTERNAL_NET. Compared this to
the solution in Table 2, which needs up to 4*32 +1 = 129
TCAM entries, this is 94.5% space saving!

The above example is a special case because there is only
one type of negation ($EXTERNAL_NET) in one field. In a
more general case, there can be more than one negation in
each field. For example, there could be both !80 and !90 or
!subnet1 and !subnet2 in the same field. Our scheme can be
easily extended. If there are k unique negations in one field
and their non-negation forms do not intersect (e.g., 80 and
90), then we need k separators of the non-negation form (80,
90) and they can be in any order. If they intersect, we need up
to 2k -1 separation rules for this field. For instance, suppose
there are !subnet1 and !subnet2. There should be three
separation rules applying to subnet1∩ subnet2, subnet2, and
subnet1. k is usually a very small number because it is limited
by the number of peered subnets. In general, if each field i
needs ki separators, then at most 1)1)(k(i −+∏ separator

rules should be added. In our previous example of removing
$EXTERNAL_NET from source and destination IP addresses,
k1= k2=1, so we need a total of 2*2-1=3 separator rules.

V. SIMULATION RESULTS
To test the effectiveness of our algorithm, we use the

SNORT [1] rule set. The SNORT rule set has undergone
significant changes since 1999. We tested all the publicly
available versions after 2.0. Although each rule set has around
1700-2000 rules, many of the rules share a common rule
header. As illustrated in Table 4, unique rule headers in each
version are relatively stable. Note that we omitted the versions
that share the same rule headers with the previous version.

Version Release
Date

Rule Set
Size

Rules
added

Rules
deleted

2.0.0 4/14/2003 240 - -
2.0.1 7/22/2003 255 21 6
2.1.0 12/18/2003 257 3 1
2.1.1 2/25/2004 263 6 0

Table 4. SNORT rule headers statistics.

Our task is to put these rule headers into TCAM as
classification rules, and store the corresponding matching rule
indices in the match list. Hence, given an incoming packet,
with one TCAM lookup and another SRAM lookup, we can
implement multi-match packet classification.

The second column in Table 5 records the size of extended
rule set in TCAM compatible order. It is roughly 15 times the
original rule set, which is well below the theoretical upper
bound. This agrees with the findings in [4, 7, 8].

 1568933925

6

Version # of rules
in extended set

Single
negation

Double
negations

Triple
negations

2.0.0 3,693 62.334% 0.975% 0
2.0.1 4,009 62.484% 1.422% 0.025%
2.1.0 4,015 62.540% 1.420% 0.025%
2.1.1 4,330 62.332% 1.363% 0.023%

Table 5. Statistics of extended rules set.

With Negation Negation Removed Snort
version Extended

rule set
size

TCAM
entries
needed

 Extended
rule set size

TCAM
entries
needed

TCAM
space
saved

2.0.0 3,693 120,409 4,101 7,853 93.4%
2.0.1 4,009 145,208 4,411 8,124 94.4%
2.1.0 4,015 145,352 4,420 8,133 94.4%
2.1.1 4,330 151,923 4,797 8,649 94.3%

Table 6. Performance of negation removing scheme.

The number of negations in the extended rule set is
significant. As shown in Table 5, on average 62.4% of the
rules have one negation, 1.295% of the rules have two
negations and there are a very small number of rules with
three negations. In our simulation, we assume the home
network is a class C address with a 24 bit prefix, so each
$EXTERNAL_NET needs 24 TCAM entries. Negation of a
port, e.g., !80, !21:23 consumes 16 TCAM entries. Under this
setting, a single negation takes up to 24 TCAM entries; a
double negation consumes up to 24*24=576 TCAM entries;
and a triple negation requires up to 24*24*16=9216 TCAM
entries. Hence, if we directly put all the rules with negation
into the TCAM, it takes up to 151,923 TCAM entries as
shown in the third column of Table 6.

Our negation removing scheme presented in Section 3
significantly saves TCAM space. For the SNORT rule header
set, we added 2*3*2*2-1 = 23 separation rules in front of the
original rule set because there are four types of negations:
$EXTERNAL_NET at source IP, $EXTERNAL_NET at
destination IP, !21:23 and !80 at source port, and !80 at
destination port. It only adds about 10% extra rules in the
extended rule set (4th column of Table 6). However, with these
10% more rules, we reduce the number of TCAM entries by
over 93%.

Note that this total number is larger than the extended rule
set size. This is because some rules contain port ranges that
consume extra TCAM entries. The range mapping approach
in [11] is not used because this approach requires two
additional memory lookups for key translations, which
reduces classification speed. If a lower speed is acceptable,
then we can also incorporate the range mapping technique. In
this case, the total TCAM entries needed is just the size of
extended rule set after removing negations.

Each rule is 104 bits (8 bits protocol id, 2 ports with 16 bits
each, 2 IP addresses with 32 bits each), which can be rounded
up to use a 128 bits entry TCAM. The total TCAM space
needed for SNORT rule header set is 128*8649=135KB.

To study the effect of negation, we randomly vary the
negation percentages in the original rule set. In the SNORT
original rule header sets, 89.7% of rules contain single
negation and 1.1% of the rules contain double negation. So,
we first consider single negation. Figure 7 shows the TCAM
space needed both with and without our negation removing
scheme. When the percentage of negation is very low, the two
schemes perform similarly. If we study closely, when the
negation percentage is very small (<2%), putting negation
directly is better than our scheme since we introduce extra
separation rules that may intersect with other rules. However,
as the percentage of negation is higher, the TCAM space
needed for the “with negation” case grows very fast. In
contrast, the curve of our scheme remains flat and thus can
save a significant TCAM space. For example, when 98% of
the rules involve negation, our scheme saves 95.2% of the
TCAM space compared to the “with negation” case. This is
only for the single negation case. For double negations, or
triple negations, the saving would be even higher since each
double/triple negation rule requires many more TCAM
entries.

Performance of Negation Removing Scheme

0

20000

40000

60000

80000

100000

0
0.0

8
0.1

6
0.2

4
0.3

2 0.4 0.4
8

0.5
6

0.6
4

0.7
2 0.8 0.8

8
0.9

6

% of single Negation

TC
AM

 E
nt

ri
es

 n
ee

de
d

With Negation
Negation Removed

Fig. 7. Negation removing scheme.

VI. RELATED WORK
As far as we know, we are the first to study the multi-match

classification problem. The most relevant work is the filter
conflict study by Hari et al. [12]. They showed that even for
single-match classification problem, classification rules can
intersect and thus introduce conflict. There are cases where
commonly used conflict resolution schemes based on filter
ordering do not work. They proposed to solve the problem by
adding new filters in a manner similar to our approach.

There have been extensive studies of the single-match
classification problem and some of them can be extended to
report multi-match results. For example, Grid of Tries [9] is
proposed to solve the two dimension (source and destination
IP addresses) classification problem. Their algorithm can be
extended for multiple fields with caching techniques. Other
heuristic algorithms like Recursive Flow Classification (RFC)
[7], HiCuts and HyperCuts [6, 8] work well for real world rule
sets for single-match classification. However, these heuristic
algorithms require several memory lookups and do not
provide a deterministic lookup time. So, they are not well
matched to the multi-match classification due to the tight time
requirements for subsequent processing.

 1568933925

7

Most recently, TCAM is used in high end routers for single-
match packet classification. Since TCAM is smaller and more
expensive than SRAM, different approaches are proposed to
save TCAM space or reduce TCAM power consumption. For
example, Liu [11] proposed an algorithm for mapping range
values into TCAM. CoolCAMs [13] partitioned TCAM so
that for a given packet, they searched only several partitions to
achieve lower power consumption. Spitznagel et al. [10]
extended this idea and organized the TCAM as a two level
hierarchy in which an index block was used to enable/disable
the querying of the main blocks. In addition, they also
incorporated circuits for range comparisons within the TCAM
memory array. Our work focuses on multi-match problem and
negation removing.

VII. CONCLUSIONS

In this paper, we use a TCAM-based solution to solve the
multi-match classification problem. The solution reports all
the matching results with a single TCAM lookup and a SRAM
lookup. In addition, we propose a scheme to remove negation
in the rule sets, thus saving 93% to 95% of the TCAM space
over a straightforward implementation. From our simulation
results, the SNORT rule header set can easily fit into a small
TCAM of size 135KB, and is able to retrieve all matching
results within two memory accesses. We believe a TCAM-
based approach is viable, as TCAM is now becoming a
common extension to network processors. Although TCAM is
more expensive and has higher power consumption than
standard memory such as DRAM and SRAM, the capability
and speed it offers still make it an attractive approach in high
speed networks.

APPENDIX
Claim in Section 3: If Ei is the first superset of x (x ⊂ Ei) in

E, we can add x before Ei according to requirement (3) and
bypass all the rules after Ei.

Proof: For any rule Ej after Ei, there could be four cases.
We will study it one by one and show why we can bypass all
of them.

First, we can bypass any rule Ej that is disjoint with x,
according to requirement (1).

Second, it is impossible that Ej ⊂ x. If so, Ej ⊂ x ⊂ Ei,
which contradicts with requirement (2).

Third, if x ⊂ Ej, Ej must also be a superset of Ei. Otherwise,
the intersection of Ej and Ei must be a superset of x as well
and it must be presented before Ei , according to requirement
(4). This contradicts with the assumption that Ei is the first
superset of x in E. Therefore, Ei ⊂ Ej and we have Mj ⊂ Mi

according to requirement (2). In this case, we don’t need to
process Ej since we can extract all the information from Mi.

Fourth case, if Ej intersects with x and suppose z = Ej ∩ x,
then z must have appeared before Ei. This is because Ej must
intersect with Ei as well since Ei is a superset of x. Let Ek =

Ei ∩ Ej, according to requirement (4), k < i. In addition, z =
Ej ∩ x= Ej ∩ x ∩ Ei = Ek ∩ x, because x ⊂ Ei. Therefore, we
must have generated z when processing Ek which is before Ei.
This meets the requirement (4), so we can bypass Ej.

Hence, all the rules after Ei are either exclusive to x, or their
intersections have already been included, so we can skip all
those rules.

ACKNOWLEDGEMENTS
Special thank to Dr. T.V. Lakshman from Lucent Bell labs

for suggesting TCAM as a possible solution for the multi-
match classification problem. Without his insightful
discussion and timely feedback, this paper will not be
possible. We would like to extend our gratitude to SNORT
system developers for implementing the powerful tool and
making it open source. We would also like to thank Li Yin,
Mel Tsai, Matthew Caesar, Yanlei Diao, and Ananth Rao for
proof reading. Finally, we want to thank anonymous reviewers
for valuable comments and suggestions.

REFERENCES

[1] SNORT network intrusion detection system, www.snort.org,
[2] D. L. Tennenhouse and D. J. Wetherall, “Towards an Active
Network Architecture,” Computer Communication Review, Vol. 26,
No. 2, April 1996
[3] G. Porter, M. Tsai, L. Yin, and R. Katz, “The OASIS Group at
U.C. Berkeley: Research Summary and Future Directions,”
http://oasis.cs.berkeley.edu/pubs/oasis_wp.doc
[4] M. Kounavis, A. Kumar, HM Vin, R. Yavatkar, and A. Campbell,
“Directions in Packet Classification for Network Processors,” NP2
Workshop, Feburary 2003
[5] M. H. Overmars and A. F. Stappen, “Range searching and point
location among fat objects,” European Symposium on Algorithms,
1994
[6] P. Gupta, N. McKeown “Packet classification using hierarchical
intelligent cuttings,” in Hot Interconnects, August 1999
[7] P. Gupta, N. McKeown “Packet classification on multiple fields,”
in SIGCOMM, August 1999
[8] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet
Classification Using Multidimensional Cutting,” in SIGCOMM,
August 2003
[9] V. Srinivasan, G. Varghese, S. Suri, M. Waldvogel, “Fast
and Scalable Layer Four Switching”, in SIGCOMM,
September 1998
[10] E. Spitznagel, D. Taylor, and J. Turner, “Packet Classification
Using Extended TCAMs,” ICNP, November 2003
[11] P. Gupta, and N. McKeown, “Algorithms for Packet
Classification,” IEEE Network, March 2001
[11] H. Liu, “Reducing Routing Table Size Using Ternary-
CAM”, Hot Interconnects, August 2001
[12] A. Hari , S. Suri, and G. Parulkar, “Detecting and
Resolving Packet Filter Conflicts”, in INFOCOM, March
2000
[13] F. Zane, G. Narlikar, and A. Basu, “CoolCAMs: Power-
Efficient TCAMs for Forwarding Engines,” in INFOCOM,
March 2003

