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Abstract— Today's packet classification systems are designed to 
provide the highest priority matching result, e.g., the longest 
prefix match, even if a packet matches multiple classification 
rules. However, new network applications, such as intrusion 
detection systems, require information about all the matching 
results. We call this the multi-match classification problem.  In 
several complex network applications, multi-match classification 
is immediately followed by other processing dependent on the 
classification results. Therefore, classification should be even 
faster than the line rate. Pure software solutions cannot be used 
due to their slow speeds.  

In this paper, we present a solution based on Ternary Content 
Addressable Memory (TCAM), which produces multi-match 
classification results with only one TCAM lookup and one SRAM 
lookup per packet— about ten times fewer memory lookups than 
a pure software approach. In addition, we present a scheme to 
remove the negation format in rule sets, which can save up to 
95% of TCAM space compared with the straight forward 
solution. We show that using the pre-processing scheme we  
present, header processing for the SNORT rule set can be done 
with one TCAM and one SRAM lookup using a 135KB TCAM. 
 

Index Terms—Packet Classification, Multi-Match Packet 
Classification, Ternary CAM, Negation Removing.  
 

I. INTRODUCTION 
ew network applications are emerging that demand multi-
match classification, that is, requiring all matching results 
instead of only the highest priority match. One example 

of such an application is the network intrusion detection 
system, which monitors packets in a network and detects 
malicious intrusions or DOS attacks. Systems like SNORT 
[1], employ thousands of rules. Figure 1.a gives an example 
SNORT rule that detects a MS-SQL worm probe. Figure 1.b is 
a rule for detecting an RPC old password overflow attempt.  

Each rule has two components: a rule header and a rule 
option. The rule header is a classification rule that consists of 
five fixed fields: protocol, source IP, source port, destination 
IP, and destination port. The rule option is more complicated: 
it specifies intrusion patterns to be used to scan packet 
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contents. Rule headers may have overlaps, so a packet may 
match multiple rule headers (e.g., both examples above). 
Multi-match classification is used to find all the rule headers 
that match a given packet so that we can check the 
corresponding rule options one by one later. 

Rule Headerudp $EXTERNAL_NET any
-> $HOME_NET 1434

content:"|04|"; depth:1;
content:"|81 F1 03 01 04

9B 81 F1 01|";
content:"sock";
content:"send"

Rule Option

udp $EXTERNAL_NET any -
> $HOME_NET any

content:"|00 01 86 A9|";
offset:12; depth:4;

content:"|00 00 00 01|";
distance:4; within:4;

byte_jump:4,4,relative,align;
byte_jump:4,4,relative,align;
byte_test:4,>,64,0,relative;

content:"|00 00 00 00|";
offset:4; depth:4; sid:2027;

rev:4;

1.a: A  rule for MS-SQL
Worm detection.

1.b: A  rule for RPC old
password overflow attempt

Fig. 1.  Snort rule examples. 

Another application is programmable network elements 
(PNEs) [2, 3] proposed for implementing edge network 
functions.  Typically, a packet traverses a number of network 
devices that perform different functions, e.g., firewall, HTTP 
load balancing, intrusion detection, NAT, etc. This can be 
highly inefficient because a packet has to traverse every 
device even if only a subset of them needs to operate on the 
packet contents. In addition, because each network device is 
separately built, common functions like classification are 
repeatedly applied. This wastes resources and induces extra 
delay. To address this problem, PNEs are evolving to support 
multiple functions in one device. Multi-match classification is 
one important building block in PNEs: when a packet first 
enters a PNE, it is classified to identify the relevant functions. 
Then, only those selected functions will be applied, which 
saves resources and increases processing speed. 

As we can see from the above two applications, multi-
match classification is usually the first step in performing 
complex network system functions followed by processing 
that is dependent on the classification results. Applications 
that require only single-match classifications, however, tend to 
have further processing that is also simple (e.g., go to a 
specific port, or drop a packet, etc.). Therefore, to maintain 
the same line rate, multi-match classification must be much 
faster than single-match to leave enough time for subsequent 
processing without increasing latency too much.   
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The single-match problem on multiple fields is complex [4]. 
For n arbitrary non-overlapping regions in F dimensions, it is 
possible to achieve an optimized query time of O(log(n)),  
with a complexity of O(nF) storage in the theoretical worst 
case [5].    However, real-world rule sets are typically simpler 
than the theoretical worst case, and heuristic approaches [6, 7, 
8, 9] provide faster solutions, e.g., 20-30 memory accesses per 
packet in the “worst case”. 

The multi-match classification problem is more complex to 
implement than single-match classification since it needs all 
the matching results. Thus, some of the heuristic optimizations 
used for the single-match classification do not apply for the 
multiple-match case.  Pure software solutions for multi-match 
classification are expected to take longer than that for single-
match classification. Furthermore, multi-match classification, 
because of the complex follow-up processing, is likely to have 
much tighter time requirements. Hence pure software 
solutions, which require tens of memory access, are 
insufficient. Instead, we need a solution that requires few 
memory lookups, with deterministic lookup time for any input 
to keep up with the high data rate. 

In this paper, we present a scheme that provides a solution 
for the multi-match problem with two memory lookups: one 
using a Ternary Content Addressable Memory (TCAM), a 
type of memory that can do parallel search at high speed, and 
the other using a standard Static Random Access Memory 
(SRAM). Our solution can save 95% of TCAM space 
compared with the straight forward solution. Using our 
scheme, header processing for the SNORT rule set can be 
done with one TCAM and one SRAM lookup using a 135KB 
TCAM.  

The remainder of the paper is organized as follows: we will 
begin by exploring some design choices and technical 
challenges in Section 2. Section 3 and 4 present our solution 
to the multi-match classification problem with TCAM. Finally 
we present simulation results in Section 5 and conclude in 
Section 7. 
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Fig. 2.  TCAM 

II. MOTIVATION AND TECHNICAL CHALLENGES 
A TCAM consists of many entries, the top entry of the 

TCAM has the smallest index and the bottom entry has the 
largest. Each entry has several cells that can be used to store a 

string.  A TCAM works as follows: given an input string, it 
compares the string against all entries in its memory in 
parallel, and reports the “first” entry that matches the input. 
The lookup time (5 ns or less) is deterministic for any input.  
Unlike a binary CAM, each cell in a TCAM can take one of 
three states: 0, 1, or ‘do not care’ (X). With ‘do not care’ 
states, a TCAM can support matching on variable prefix 
CIDR IP addresses and thus can be used in high-speed IP 
lookups [10, 11]. Also because it has ‘do not care’ states, one 
input may match multiple TCAM entries. In this paper, we 
assume the use of the widely-adopted first-match TCAM, 
which gives out the lowest index match of the input string if 
there are multiple matches as shown in Figure 2. 

To solve the multi-match classification problem with 
TCAM, there are two challenges to be tackled: rule ordering 
and negation representation. 

Challenge 1: Arrange rules in TCAM compatible order 
Currently, the commercially available TCAM reports only 

the first matching result if there are multiple matches. This 
type of TCAM cannot directly report multi-match result. If we 
can change the TCAM hardware and let it return a bit vector 
of all matching results, one bit per entry, it still doesn’t solve 
the problem. This is because we still need to process the bit 
vector and extract the matching result, the complexity is still 
O(n). In the reminder of the paper, we use a first match 
TCAM. 

Rules can have different relationships such as subset, 
intersection, and superset. These relationships can cause 
problems for the matching results given a first-match TCAM. 
For example, suppose we have the following two rules: 

(a) “Tcp $SQL_SERVER 1433 →$EXTERNAL_NET any” 
(b) “Tcp Any Any →  Any 139” 

If we put rule (a) before rule (b) in the TACM, a packet 
matching both rules will report a match of (a) and never report 
(b), and vice versa. This is because rule (a) and (b) have an 
intersection relationship. Hence, we need an algorithm to add 
additional rules into the rule sets and order the rules in a 
specific way to avoid the above problem. We call such an 
ordering a “TCAM compatible order”, which means: when a 
packet is compared with rules according to this order, we can 
retrieve all matching results solely based on the first matched 
rule. There should be no need to check the successive rules.  

Challenge 2: Representing Negation with TCAM 
The negation (!) operation is common in rule sets. For 

example, if we wish to find packets that are not destined to 
TCP port 80, we will use a rule “tcp any any →  any !80”.  
The 16-bit binary form of 80 is 0000 0000 0101 0000. There 
is no direct way to map the negation into one TCAM entry. If 
we directly flip every bit over, 1111 1111 1010 1111 stands 
for 65375, which is only a subset of !80.  To represent the 
whole range of !80, we need 16 TCAM entries as shown in 
Figure 3. The basic approach flips one bit in one of the 16 
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binary positions and puts ‘do not care’ to all the others.  
1xxx xxxx xxxx xxxx 

x1xx xxxx xxxx xxxx 

xx1x xxxx xxxx xxxx 

xxx1 xxxx xxxx xxxx 

xxxx 1xxx xxxx xxxx 

xxxx x1xx xxxx xxxx 

xxxx xx1x xxxx xxxx 

xxxx xxx1 xxxx xxxx 

xxxx xxxx 0xxx xxxx 

xxxx xxxx x1xx xxxx 

xxxx xxxx xx0x xxxx 

xxxx xxxx xxx1 xxxx 

xxxx xxxx xxxx 1xxx 

xxxx xxxx xxxx x1xx 

xxxx xxxx xxxx xx1x 

xxxx xxxx xxxx xxx1 

Fig. 3.  Binary representation of !80 in TCAM 

In addition to port negation, some rules require subnet 
addresses to be negated. For example, $EXTERNAL_NET 
frequently appears in rule sets, where $EXTERNAL_NET = 
!$HOME_NET.  To represent this in TCAM directly, we need 
to flip every bit in the prefix of $HOME_NET and put ‘do not 
care’ to the other positions. Because IP subnet addresses are 
32 bits, each negated address costs up to 32 TCAM entries. 
Moreover, there could be several negations in one rule. For 
example, the rule “tcp $EXTERNAL_NET any →  
$EXTERNAL_NET !80” requires up to a total of 
32*32*16=16384 TCAM entries for this single rule!  This is 
obviously not an acceptable approach since TCAMs have a 
much smaller capacity than SRAMs (e.g., 2MB with current 
technology). 

The next two sections describe our approach to addressing 
these technical challenges.  

III. CREATE RULE SETS IN TCAM COMPATIBLE ORDER 
To obtain multi-match results in one lookup with a first-

match TCAM, we need to identify intersections between rules. 
Studies in [4, 12] show that the number of intersections 
between real-world rules is significantly smaller than the 
theoretical upper bound because each field has a limited 
number of values (e.g., all known port numbers) instead of 
unconstrained random values. So maintaining all the 
intersection rules is feasible. Indices of the rules used to 
generate the intersection are stored in a list. We call this a 
“Match List” and store the list in SRAM. Given a packet, we 
first perform a TCAM lookup and then use the matching index 
to retrieve all matching results with a secondary SRAM 
lookup as shown in Figure 2. The extended rules plus the 
original rules form an extended rule set. Throughout the 
remainder of this paper, a “rule” refers to a member of the 
extended rule set, unless otherwise specified as a member of 

the original rule set. The items in the match list are the indices 
of rules in the original rule set.  

As defined in Section 2, the TCAM compatible order 
requires rules to be ordered so that the first match should 
record all the matching results in the match list. We first 
enumerate the relationships between any two different rules Ei 
and Ej, with match list Mi and Mj. There are four cases: 
exclusive, subset, superset, and intersection, each with 
following corresponding requirements: 

1. Exclusive (Ei ∩ Ej,=φ ): then i and j can have any order.  

2. Subset (Ei ⊆ Ej): then i<j and Mj ⊆ Mi . 

3. Superset (Ej ⊂ Ei): then j<i and Mi ⊆ Mj . 

4. Intersection (Ei ∩ Ej ≠ φ ): then there is a rule El = 
(Ei ∩ Ej) (l<i, l<j), and (Mi ∪ Mj ) ⊆ Ml.  

Case 1 is trivial: if Ei and Ej are disjoint, they can be in any 
order since every packet matching Ei never matches Ej. For 
Case 2 where Ei is a subset of Ej, every packet matching Ei 
will match Ej as well, so Ei should be put before Ej and match 
list Mi should include Mj. In this way, packets first matching 
Ei will not miss matching Ej. Similar operations are required 
for Case 3. Besides these three cases, partially overlapping 
rules lead to Case 4. In this case, we need a new rule El 
recording the intersection of these two rules (Ei ∩ Ej) placed 
before both Ei and Ej with both match results included in its 
match list (Mi ∪ Mj) ⊆ Ml). Note that the intersection of Ei 

and Ej may be further divided into smaller regions by other 
rules (e.g., Ek in Figure 4). In this case, all the smaller regions 
(Ei ∩ Ej and Ei ∩ Ej ∩ Ek ) have to be presented before both Ei 

and Ej. This can actually be deduced by requirement (4). 

iE
iE

jE

kE

jE

ji EE ∩ ki EE ∩kji EEE ∩∩

 
Fig. 4.  An example of intersections of three rules. 

Cases 1 to 4 cover all the possible relationships between 
any two rules. By applying the corresponding operations 
talked above, we can meet the requirements and get a TCAM 
compatible order. 

Figure 5 is the pseudo-code for creating a TCAM 
compatible order. The algorithm takes the original rule set 
R={R1, R2, …., Rn} as the input. Each rule Ri is associated with 
a match list, which is an index of itself ({i}). The algorithm 
outputs an extended rule set E in TCAM compatible order. 
The algorithm inserts one rule at a time into the extended rule 
set E, which is initially empty (the empty set obviously 
follows the requirements of TCAM compatible order). Next, 
we show that after each insertion, E still meets the 
requirements. Insert(x, E) is the routine to insert rule x into E. 
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It scans every rule Ei in E and checks the relationship between 
Ei and x. If they are exclusive, then we bypass Ei. If Ei is a 
subset of x, we just add match list Mx to Mi and proceed to the 
next rule. If Ei is a superset of x, we add x before Ei according 
to requirement (3) and ignore all the rules after Ei (see the 
proof in the appendix). Otherwise, if they intersect, then 
according to requirement (4), a new rule Ei ∩ x is inserted 
before Ei if it is not already been added. The match list for the 
new rule is Mx ∪ Mi. As you can see, we strictly follow the 
four requirements when adding every new rule, so the 
generated extended rule set E is in TCAM compatible order. 
Due to space limitations, we do not present the details of the 
deletion algorithm.  
______________________________________________________________________________ 

extend_rule_set(R){ 
E=φ ; 
for all the rule Ri in R 

     E=insert(Ri, E); 
return E; 

} 
insert(x, E){ 
     for all the rule Ei in E { 
           switch the relationship between Ei and x: 
               case exclusive: 
     continue;  
             case subset: 
     Mi = Mx ∪  Mi; 
                continue; 
                 case superset: 
     Mx = Mx ∪  Mi; 
                add x before Ei ; 
     return E; 
       case intersection: 
     if (Ei ∩ x ∉E and Mx ⊄  Mi) 

add t = Ei ∩ x before Ei ; 
                  Mt = Mx ∪  Mi ;        
          }    
         add x at the end of E and  return E; 
} 
______________________________________________________________________________ 

Fig. 5. Code for generating TCAM compatible order. 

 Original Rule Set 
1 Tcp $SQL_SERVER 1433 →  $EXTERNAL_NET any 
2 Tcp $EXTERNAL_NET 119 →  $HOME_NET Any 
3 Tcp Any Any →  Any 139 

Table 1. Example of original rule set with 3 rules. 

Extended Rule Set Match 
List 

Tcp $SQL_SERVER 1443 →$EXTERNAL_NET 139 1,3 
Tcp $SQL_SERVER 1433  →$EXTERNAL_NET any 1 
Tcp $EXTERNAL_NET 119  →$HOME_NET 139 2,3 
Tcp $EXTERNAL_NET 119  →  $HOME_NET any 2 
Tcp any any →  any 139 3 

Table 2. Extended rule set in TCAM compatible order. 

To illustrate the algorithm, let’s look at the following 
example in Table 1 which contains three rules. To generate 
extended rule set E, first we insert rule 1.  Rule 2 does not 

intersect with rule 1 so it can be added directly. Now, we have 
rule 1 followed by rule 2. When inserting rule 3, we find that 
it intersects with both rule 1 and rule 2, so we add two 
intersection rules with match list {1, 3} and {2, 3} and put 
rule 3 at the bottom of the TCAM. The final extended rule set 
E is presented in Table 2. 

IV. NEGATION REMOVING 
 The scheme presented in Section 3 can be used to generate 

a set of rules in TCAM compatible order.  In this section, we 
describe how to insert them into TCAM. As explained before, 
each cell in the TCAM can take one of three states: 0, 1 or ‘do 
not care’. Hence, each rule needs to be represented by these 
three states. 

Usually, a rule contains IP addresses, port information, 
protocol type, etc. IP addresses in the CIDR form can be 
represented in the TCAM using the ‘do not care’ state. 
However, the port number may be selected from an arbitrary 
range. Liu [11] has proposed a scheme to efficiently solve port 
range problem. However, we don’t use it here because it 
requires two additional memory lookup and SNORT rule set 
doesn’t contain a huge number of ranges. We just directly 
map range into TCAM using multiple entries, e.g., port 2-5 is 
represented as 01* and 10*. A more complicated problem for 
the TCAM is that some IP and port information is in a 
negation form. As explained in Section 2, each negation 
consumes many TCAM entries, so in this section, our goal is 
to remove negation from the rule set to save TCAM space.  

Before we present our scheme, let us first look at the 
combinations of source and destination IP address spaces as 
shown in Figure 6. Use the rule set in Table 1 as an example,  
rule 3 applies to all 4 regions since it is “any” source to “any” 
destination; rule 1 applies to region D because we assume 
$SQL_SERVER is inside $HOME_NET; and rule 2 applies to 
region A.  The regions that contain negation 
($EXTERNAL_NET) are region A ($EXTERNAL_NET to 
$HOME_NET), D ($HOME_NET to $EXTERNAL_NET), 
and B ($EXTERNAL_NET to $EXTERNAL_NET).  

C

A

D

B

Home Net

Home Net External Net

External Net

Rule 3

Rule  2, 3

Rule 1,  3

Rule 3

Source IP

Destination IP
 

Fig. 6. Source and destination IP addresses space. 

Consider region A as an example: the rules in this region 
are in the form of “* $EXTERNAL_NET * →$HOME_NET+ 
*”. Note that * means it could be any thing (e.g. “tcp” or 
“any” or a specific value). $HOME_NET+ stands for 
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$HOME_NET and any subset of it such as $SQL_SERVER. 
If we can extend rules in region A to region A and C, we can 
replace $EXTERNAL_NET with keyword “any” and now 
rules are in the format of “* any * →$HOME_NET+ *”. 
However, after extending the region, we change the semantics 
of the rule and this may affect packets in region C. In other 
words, a packet in the format of “* $HOME_NET * →  
$HOME_NET+ *” will report a match of this rule as well.  

This problem, however, is solvable because TCAM only 
reports the first matching result. With this property, we can 
first extract all the rules applying to region C and put those at 
the top of TCAM. Next, we add a separator rule between 
region C and region A: “any $HOME_NET any →  
$HOME_NET any” with an empty action list. In this way, all 
the packets in region C will be matched first and thus ignore 
all the rules afterwards. With this separator rule, we can now 
extend all the rules in region A to region A and C. Similarly, 
rules in region D can be extended to region C and D, rules in 
region B can be extended to region A, B, C, and D. Therefore, 
we will put all the rules in the following order: 

Rules in region C: “* $HOME_NET+ * →$HOME_NET+ *” 
Separator rule 1: “any $HOME_NET any →$HOME_NET 

any” 
Rules in region D, specified in the form of region C and D:  
“* $HOME_NET+ * →any *” 
Rules in region A, specified in the form of region A and C:  
“* any  * →$HOME_NET+ *” 
Separator rule 2: “any $HOME_NET any →  any any” 
Separator rule 3: “any any any →$HOME_NET any” 
Rules in region B, specified in the form of region A, B, C and 

D: “* any * →any *” 

Putting extended rule sets in this order can be simply 
achieved by first adding all three separator rules to the 
beginning of the original rule set, then following the algorithm 
in Section 2. If a rule applies to region A, it will automatically 
intersect with the separator 1, and generate a new rule in 
region C. If a rule applies in region B, it will intersect with all 
three separators and create three intersection rules. After that, 
we can replace all the $EXTERNAL_NET references with the 
keyword “any”.  

TCAM
Index 

TCAM entries Match 
list 

1 tcp $HOME_NET any →$HOME_NET 139 3 
2 any $HOME_NET any →$HOME_NET any  
3 tcp $SQL_SERVER 1433 →  any 139 3, 1 
4 tcp $SQL_SERVER 1433 →  any any 1 
5 tcp any 119 →  $HOME_NET 139 2,3 
6 tcp any 119 →$HOME_NET any 2 
7 tcp any any →any 139 3 

Table 3. Extended rule set in a TCAM with no negation. 

Table 3 shows the result of mapping the rule set of Table 1 
into TCAM. The first rule in region C is extracted from rule 3 

that applies to all four regions. The second rule is a separator 
rule.  With these two rules, we can replace the 
$EXTERNAL_NET in rules 3-6 with keyword “any”. At the 
end, there is rule 7 which applies to all the regions. Separator 
rules 2 and 3 are omitted because no rule is in the form of 
$EXTERNAL_NET to $EXTERNAL_NET in the original 
rule set. In this example, by adding only two rules, we can 
completely remove the $EXTERNAL_NET. Compared this to 
the solution in Table 2, which needs up to 4*32 +1 = 129 
TCAM entries, this is 94.5% space saving! 

The above example is a special case because there is only 
one type of negation ($EXTERNAL_NET) in one field.  In a 
more general case, there can be more than one negation in 
each field. For example, there could be both !80 and !90 or 
!subnet1 and !subnet2 in the same field.  Our scheme can be 
easily extended. If there are k unique negations in one field 
and their non-negation forms do not intersect (e.g., 80 and 
90), then we need k separators of the non-negation form (80, 
90) and they can be in any order. If they intersect, we need up 
to 2k -1 separation rules for this field. For instance, suppose 
there are !subnet1 and !subnet2. There should be three 
separation rules applying to subnet1∩ subnet2, subnet2, and 
subnet1. k is usually a very small number because it is limited 
by the number of peered subnets. In general, if each field i 
needs ki separators, then at most  1)1)(k( i −+∏  separator 

rules should be added. In our previous example of removing 
$EXTERNAL_NET from source and destination IP addresses, 
k1= k2=1, so we need a total of 2*2-1=3 separator rules. 

V. SIMULATION RESULTS 
To test the effectiveness of our algorithm, we use the 

SNORT [1] rule set. The SNORT rule set has undergone 
significant changes since 1999. We tested all the publicly 
available versions after 2.0. Although each rule set has around 
1700-2000 rules, many of the rules share a common rule 
header. As illustrated in Table 4, unique rule headers in each 
version are relatively stable. Note that we omitted the versions 
that share the same rule headers with the previous version. 

Version Release 
Date 

Rule Set 
Size 

Rules 
added 

Rules 
deleted 

2.0.0 4/14/2003 240 - - 
2.0.1 7/22/2003 255 21 6 
2.1.0 12/18/2003 257 3 1 
2.1.1 2/25/2004 263 6 0 

Table 4. SNORT rule headers statistics. 

Our task is to put these rule headers into TCAM as 
classification rules, and store the corresponding matching rule 
indices in the match list. Hence, given an incoming packet, 
with one TCAM lookup and another SRAM lookup, we can 
implement multi-match packet classification. 

The second column in Table 5 records the size of extended 
rule set in TCAM compatible order. It is roughly 15 times the 
original rule set, which is well below the theoretical upper 
bound. This agrees with the findings in [4, 7, 8].  
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Version # of rules 
in extended set 

Single 
negation 

Double  
negations 

Triple 
negations

2.0.0 3,693 62.334% 0.975% 0 
2.0.1 4,009 62.484% 1.422% 0.025% 
2.1.0 4,015 62.540% 1.420% 0.025% 
2.1.1 4,330 62.332% 1.363% 0.023% 

Table 5. Statistics of extended rules set. 

With Negation  Negation Removed Snort 
version Extended 

rule set 
size 

TCAM 
entries 
needed 

 Extended 
rule set size 

TCAM 
entries 
needed 

TCAM 
space 
saved 

2.0.0 3,693 120,409  4,101 7,853 93.4% 
2.0.1 4,009 145,208  4,411 8,124 94.4% 
2.1.0 4,015 145,352  4,420 8,133 94.4% 
2.1.1 4,330 151,923  4,797 8,649 94.3% 

Table 6. Performance of negation removing scheme. 

The number of negations in the extended rule set is 
significant. As shown in Table 5, on average 62.4% of the 
rules have one negation, 1.295% of the rules have two 
negations and there are a very small number of rules with 
three negations. In our simulation, we assume the home 
network is a class C address with a 24 bit prefix, so each 
$EXTERNAL_NET needs 24 TCAM entries. Negation of a 
port, e.g., !80, !21:23 consumes 16 TCAM entries. Under this 
setting, a single negation takes up to 24 TCAM entries; a 
double negation consumes up to 24*24=576 TCAM entries; 
and a triple negation requires up to 24*24*16=9216 TCAM 
entries. Hence, if we directly put all the rules with negation 
into the TCAM, it takes up to 151,923 TCAM entries as 
shown in the third column of Table 6.  

Our negation removing scheme presented in Section 3 
significantly saves TCAM space. For the SNORT rule header 
set, we added 2*3*2*2-1 = 23 separation rules in front of the 
original rule set because there are four types of negations: 
$EXTERNAL_NET at source IP, $EXTERNAL_NET at 
destination IP, !21:23 and !80 at source port, and !80 at 
destination port.  It only adds about 10% extra rules in the 
extended rule set (4th column of Table 6). However, with these 
10% more rules, we reduce the number of TCAM entries by 
over 93%. 

Note that this total number is larger than the extended rule 
set size. This is because some rules contain port ranges that 
consume extra TCAM entries.  The range mapping approach 
in [11] is not used because this approach requires two 
additional memory lookups for key translations, which 
reduces classification speed. If a lower speed is acceptable, 
then we can also incorporate the range mapping technique. In 
this case, the total TCAM entries needed is just the size of 
extended rule set after removing negations. 

Each rule is 104 bits (8 bits protocol id, 2 ports with 16 bits 
each, 2 IP addresses with 32 bits each), which can be rounded 
up to use a 128 bits entry TCAM. The total TCAM space 
needed for SNORT rule header set is 128*8649=135KB. 

To study the effect of negation, we randomly vary the 
negation percentages in the original rule set.  In the SNORT 
original rule header sets, 89.7% of rules contain single 
negation and 1.1% of the rules contain double negation. So, 
we first consider single negation. Figure 7 shows the TCAM 
space needed both with and without our negation removing 
scheme. When the percentage of negation is very low, the two 
schemes perform similarly. If we study closely, when the 
negation percentage is very small (<2%), putting negation 
directly is better than our scheme since we introduce extra 
separation rules that may intersect with other rules. However, 
as the percentage of negation is higher, the TCAM space 
needed for the “with negation” case grows very fast. In 
contrast, the curve of our scheme remains flat and thus can 
save a significant TCAM space. For example, when 98% of 
the rules involve negation, our scheme saves 95.2% of the 
TCAM space compared to the “with negation” case. This is 
only for the single negation case. For double negations, or 
triple negations, the saving would be even higher since each 
double/triple negation rule requires many more TCAM 
entries. 

Performance of Negation Removing Scheme
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Fig. 7. Negation removing scheme. 

VI. RELATED WORK 
As far as we know, we are the first to study the multi-match 

classification problem. The most relevant work is the filter 
conflict study by Hari et al. [12]. They showed that even for 
single-match classification problem, classification rules can 
intersect and thus introduce conflict. There are cases where 
commonly used conflict resolution schemes based on filter 
ordering do not work. They proposed to solve the problem by 
adding new filters in a manner similar to our approach.   

There have been extensive studies of the single-match 
classification problem and some of them can be extended to 
report multi-match results. For example, Grid of Tries [9] is 
proposed to solve the two dimension (source and destination 
IP addresses) classification problem. Their algorithm can be 
extended for multiple fields with caching techniques.  Other 
heuristic algorithms like Recursive Flow Classification (RFC) 
[7], HiCuts and HyperCuts [6, 8] work well for real world rule 
sets for single-match classification. However, these heuristic 
algorithms require several memory lookups and do not 
provide a deterministic lookup time. So, they are not well 
matched to the multi-match classification due to the tight time 
requirements for subsequent processing.  
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Most recently, TCAM is used in high end routers for single-
match packet classification. Since TCAM is smaller and more 
expensive than SRAM, different approaches are proposed to 
save TCAM space or reduce TCAM power consumption. For 
example, Liu [11] proposed an algorithm for mapping range 
values into TCAM. CoolCAMs [13] partitioned TCAM so 
that for a given packet, they searched only several partitions to 
achieve lower power consumption.  Spitznagel et al. [10] 
extended this idea and organized the TCAM as a two level 
hierarchy in which an index block was used to enable/disable 
the querying of the main blocks. In addition, they also 
incorporated circuits for range comparisons within the TCAM 
memory array. Our work focuses on multi-match problem and 
negation removing. 

VII. CONCLUSIONS 
 

In this paper, we use a TCAM-based solution to solve the 
multi-match classification problem. The solution reports all 
the matching results with a single TCAM lookup and a SRAM 
lookup. In addition, we propose a scheme to remove negation 
in the rule sets, thus saving 93% to 95% of the TCAM space 
over a straightforward implementation. From our simulation 
results, the SNORT rule header set can easily fit into a small 
TCAM of size 135KB, and is able to retrieve all matching 
results within two memory accesses. We believe a TCAM-
based approach is viable, as TCAM is now becoming a 
common extension to network processors. Although TCAM is 
more expensive and has higher power consumption than 
standard memory such as DRAM and SRAM, the capability 
and speed it offers still make it an attractive approach in high 
speed networks.  

APPENDIX 
Claim in Section 3: If Ei is the first superset of x (x ⊂  Ei) in 

E, we can add x before Ei according to requirement (3) and 
bypass all the rules after Ei. 

Proof: For any rule Ej after Ei, there could be four cases. 
We will study it one by one and show why we can bypass all 
of them. 

First, we can bypass any rule Ej that is disjoint with x, 
according to requirement (1).  

Second, it is impossible that Ej ⊂  x.  If so, Ej ⊂  x ⊂  Ei, 
which contradicts with requirement (2).  

Third, if x ⊂ Ej, Ej must also be a superset of Ei. Otherwise, 
the intersection of Ej and Ei must be a superset of x as well 
and it must be presented before Ei , according to requirement 
(4). This contradicts with the assumption that Ei is the first 
superset of x in E. Therefore, Ei ⊂  Ej and we have Mj ⊂  Mi 

according to requirement (2). In this case, we don’t need to 
process Ej since we can extract all the information from Mi. 

Fourth case, if Ej intersects with x and suppose z = Ej ∩ x, 
then z must have appeared before Ei. This is because Ej must 
intersect with Ei as well since Ei is a superset of x. Let Ek = 

Ei ∩ Ej, according to requirement (4), k < i. In addition, z = 
Ej ∩ x= Ej ∩ x ∩ Ei = Ek ∩ x, because x ⊂  Ei. Therefore, we 
must have generated z when processing Ek which is before Ei. 
This meets the requirement (4), so we can bypass Ej. 

Hence, all the rules after Ei are either exclusive to x, or their 
intersections have already been included, so we can skip all 
those rules. 
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