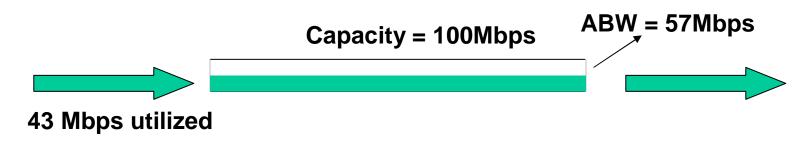
Active Probing for Available Bandwidth Estimation

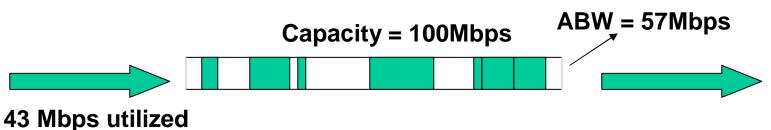
Sridhar Machiraju
UC Berkeley OASIS Retreat, Jan 2005

Joint work with D. Veitch, F. Baccelli, A. Nucci, J. Bolot

Outline

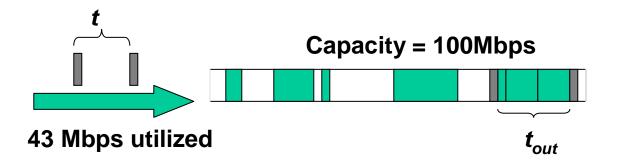

- Motivation
- · Packet pair problem setup
- · Describing the system
- · Solving with i.i.d. assumption
- · In practice
- · Conclusions and future work

Estimating Available Bandwidth


- Why
 - Path selection, SLA verification, network debugging, congestion control mechanisms
- · How
 - Estimate cross-traffic rate and subtract from known capacity
 - Use packet pairs
 - Estimate available bandwidth directly
 - Use packet trains

Available Bandwidth

Fluid Definition - spare capacity on a link

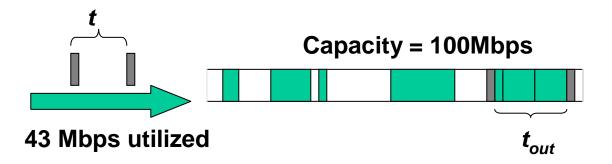


- · In reality, we have a discrete system
 - Avail. b/w averaged over some time scale

Packet Pair Methods

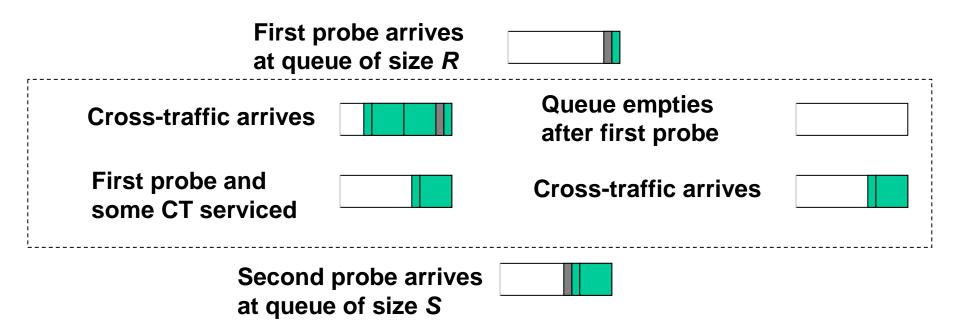
- Assume single FIFO queue of known capacity C
 - Queuing at other hops on path negligible
- Send packet pair separated by t
- Output separation t_{out} depends on cross-traffic that arrived in t

Problem Statement


- What information about the crosstraffic do packet pair delays expose?
 - Consider multi-hop case
 - How to use packet pair in practice
- · Might not apply in practice if
 - Non-FIFO queuing
 - Link layer multi-path

Outline

- Motivation
- Packet pair problem setup
- · Describing the system
- · Solving with i.i.d. assumption
- · In practice
- · Conclusions and future work


Small Probing Period t

- Assumption is that queue is busy between packets of pair
- Packet pair will not work for arbitrarily large t

How Large Can + Be?

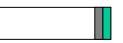
- Same packet pair delays
 - Different amounts of intervening cross-traffic

 tcannot be more than transmit time of first probe!

Tradeoffs

- Small enough *t* not possible/applicable in multi-hop path
 - Under-utilized link of lower capacity before bottleneck
 - Queue sizes of other hops comparable in magnitude to *t*
- Larger t can be used only if some assumption made about cross-traffic!
 - Independent increments, long range dependent

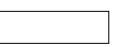
Problem Setup


- t-spaced packet pairs of size sz
- · Consecutive delays R and S of probes
 - Delay is same as encountered queue size
 - Remove need for clock synchronization later
- A(T) is amount (service time) of crosstraffic arriving at (single) bottleneck in time T
- What can we learn about the probability laws governing A(T)?

Outline

- Motivation
- · Packet pair problem setup
- · Describing the system
- · Solving with i.i.d. assumption
- · In practice
- · Conclusions and future work

Busy vs. Idle Queue


First probe arrives at queue of size *R*

Cross-traffic arrives

Queue empties after first probe

First probe and some CT serviced

Cross-traffic arrives

queue is always busy

Second probe arrives at queue of size *S*

queue is idle at least once

$$S = R + sz + A(t) - t$$

$$S = \sup_{s \text{ in } [0,t]} A(t-s) - (t-s)$$

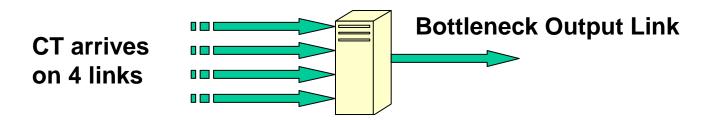
System equations

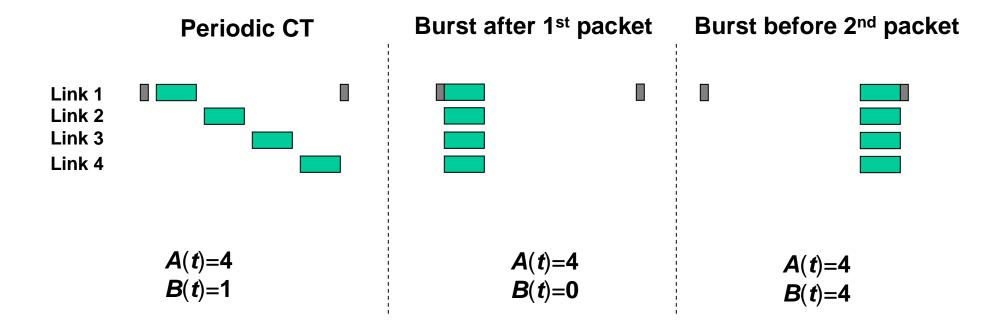
- Second delay, S is linearly related to first delay, R and amount of cross-traffic OR
- 5 is related only to amount of crosstraffic

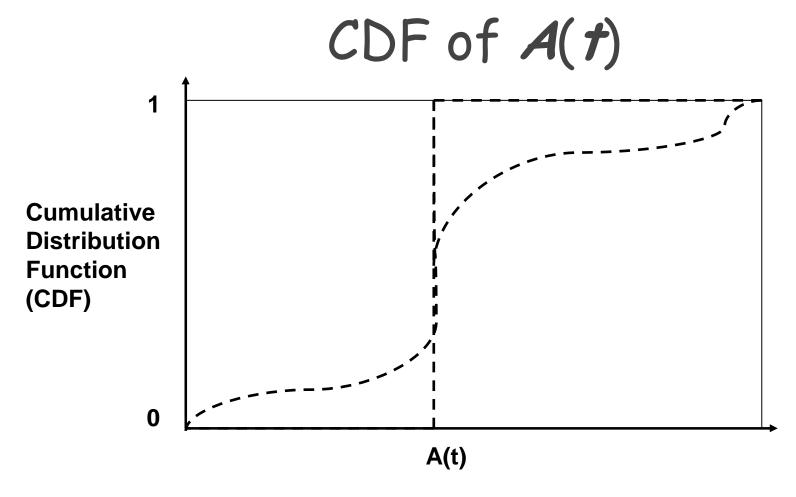
$$S = \max(R + sz + A(t) - t, B(t))$$

$$A(t) = \text{Amount of CT in time } t$$

$$B(t) = \sup_{s \text{ in } [0,t]} A(t-s) - (t-s)$$

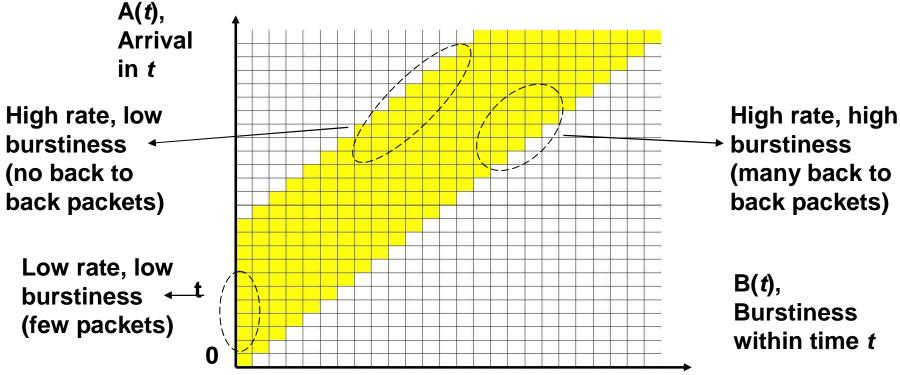

CT measured


in time units of


service time at

bottleneck

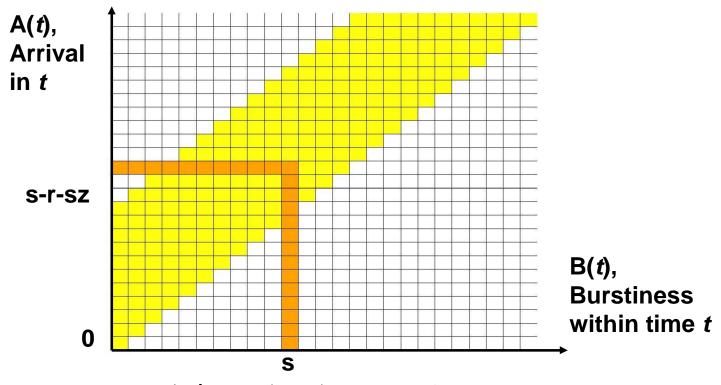
A(t) and B(t)



- Cumulative distribution of A(t)
 - Arrival process in t time units
 - Step function if similar amounts of crosstraffic arrives every time period of size *t*

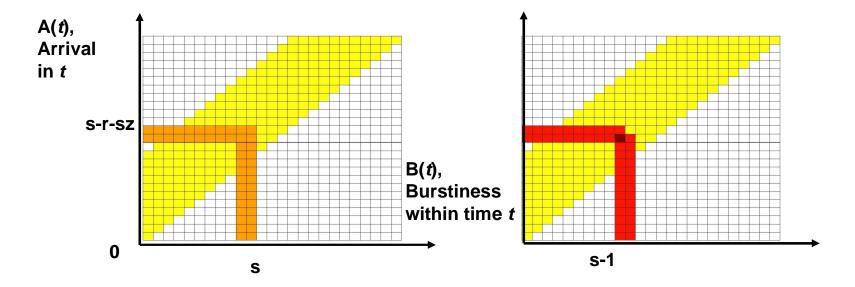
Joint Prob. Distribution of B(t), A(t)

- A(t) > B(t) > A(t) t (Density non-zero only in strip of size t)
 - B(t) depends on the capacity of link
- Given A(t), smaller B(t) implies A(t) amount of traffic is well-spread out within t time units


Outline

- Motivation
- · Packet pair problem setup
- · Describing the system
- · Solving with i.i.d. assumption
- · In practice
- · Conclusions and future work

Solving System Equations


- Assumptions on CT needed for arbitrary t
- Our assumption on CT
 - A(t) is i.i.d. in consecutive time periods of size t
 - Traces from OC-3 (155Mbps link) at real router show that dependence between consecutive A(t) is 0.16 to 0.18
- Given delays R and S of many packet pairs
 - Use conditional probabilities $f_r(s) = P(S=s|R=r)$

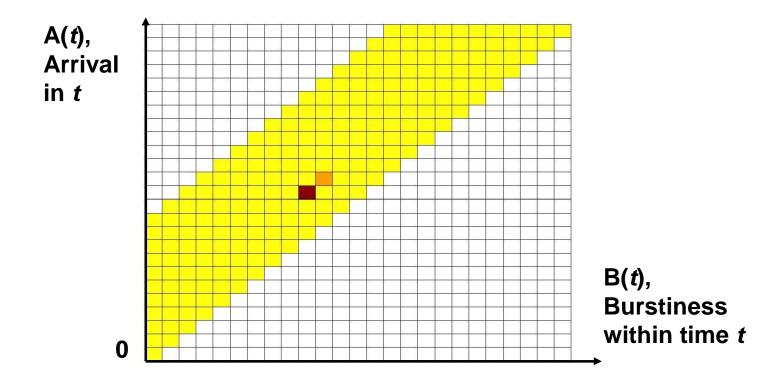
Packet Pair Delays in (B,A) Space

- Consecutive delays (r,s) occur because crosstraffic had (B,A) anywhere on a right angle
- $f_r(s)=P(S=s|R=r)$ is sum of (joint) probabilities along right angle

Resolving Density in (B,A) Space

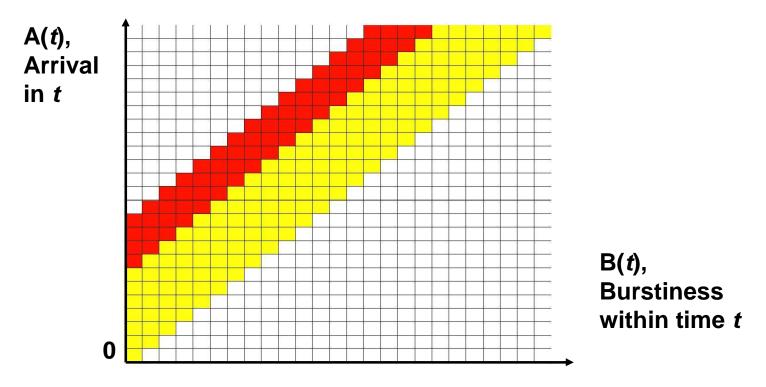
Take packet pairs such that first delay R=r f_r(s)=P(S=s|R=r)

+


Take packet pairs such that first delay R=r-1 $f_{r-1}(s-1)=P(S=s-1|R=r-1)$

Take packet pairs such that first delay R=r f_r(s-1)=P(S=s-1|R=r)

+

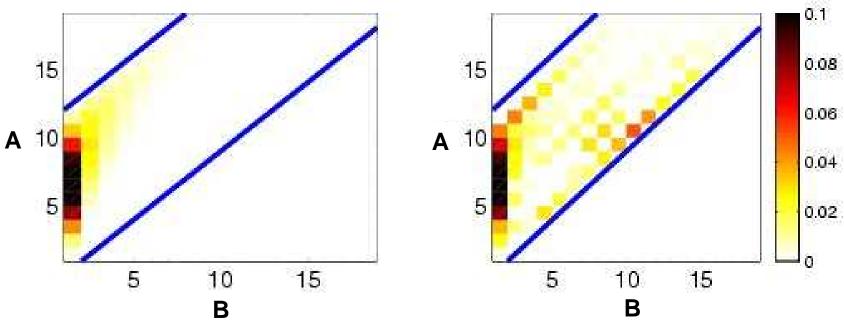

Take packet pairs such that first delay R=r+1 $f_{r+1}(s)=P(S=s|R=r+1)$

Resolving Density in (B,A) Space

- $f_r(s) + f_{r-1}(s-1) f_r(s-1) + f_{r+1}(s)$
 - Difference in two densities adjacent along a diagonal
- Telescopic sum of differences along diagonal

Unresolvable Densities

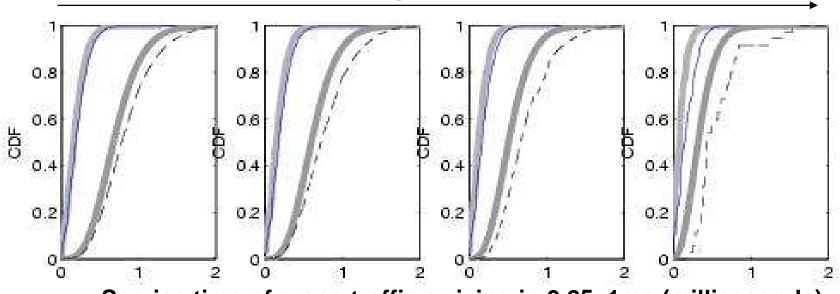
- Width of unresolvable strip is probe size, effect of probe intrusiveness
- Joint distribution also gives us CDF of A(t)


Outline

- Motivation
- · Packet pair problem setup
- · Describing the system
- · Solving with i.i.d. assumption
- In practice
- · Conclusions and future work

In Practice

- Absolute delays R and S not available
- Use minimum delay value observed and subtract from all observations
 - May not work if no probe finds all queues idle
 - Even capacity estimation may not work!
- Above limitations intrinsic to packet pair methods


Estimation with Router Traces

- Router traces of CT (utilization about 50%)
- t is 1ms; each unit is 155Mbps*0.1ms bits
- · Errors due to
 - Discretization
 - A(t) not entirely i.i.d.

Estimation of A(t)

Decreasing Cross-Traffic Rate

Service time of cross-traffic arriving in 0.25, 1ms (milliseconds)

- About 10-15% error, in general
- Larger errors with lower CT rates
 - larger delay values less likely

Outline

- Motivation
- · Packet pair problem setup
- · Describing the system
- · Solving with i.i.d. assumption
- · In practice
- Conclusions and future work

Conclusions and Future Work

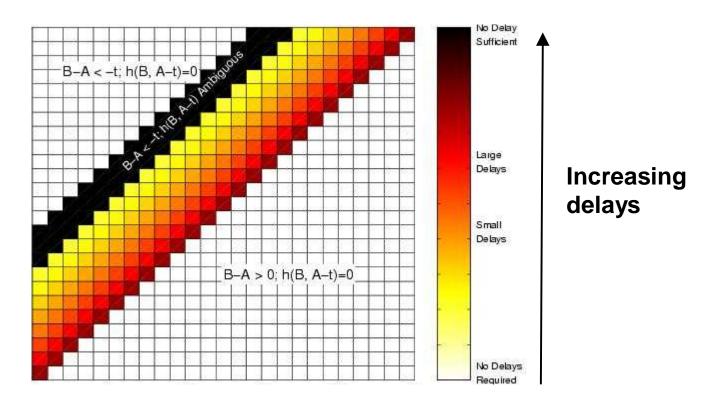
- Packet pair methods for (single hop) avail.
 b/w work either with very small t (or)
- With assumptions on CT
 - I.I.D. assumption reasonable
 - Almost complete estimation possible
 - What other assumptions possible?
- Packet pair does not saturate any link
 - Hybrid of packet pair and saturating packet train methods?

Backup Slides

A(t) and B(t)

Intervening cross-traffic	A(t) (Arrival in t time units)	B(t) (Arrival within to units)
Periodic traffic of rate <i>u.C</i>	u. t	u.t-t
Packet burst sized <i>u.t</i> after first packet	<i>u.t</i> (Size of burst)	Size of burst - t
Packet burst sized <i>u.t</i> just before 2 nd pkt.	<i>u.t</i> (Size of burst)	Size of burst

Using conditional probabilities


- $f_r(s)=P(S=s|R=r)$ is a right angle
- $F_r(s)=P(S \le s | R=r)$ is a rectangle
- Horizontal bar is difference between rectangles

$$C(s - r - x, s) = F_r(s) - F_{r+1}(s)$$

 Density in the (B,A) space is the difference between two horizontal bars

$$h(s - r - x, s) = F_r(s) - F_{r+1}(s) - [F_{r-1}(s-1) - F_r(s-1)]$$

Required Delays for Estimation

Ambiguities of size sz still allow the resolution of distribution of A(t)