
Automatic Classification of
Requests to a 3-tier system

using SLT
George Porter
Winter retreat
2005

Motivation:
What is a 3 tier system?

 Composable building blocks to build web services
 Web containers, various app/ejb containers, persistent state via

automatically managed DB pools
 Problem: Open control loop/requests driven by users

 Unusual requests, flash traffic, increased workload can
overload components of the web service

 Hard to provision; hard to make performance guarantees; this
leads to seemingly broken behavior to the end user

WEB APP DB

Increasing load leads to
perceived broken behavior

Requests per second vs # clients

0

50

100

150

200

250

10
0
20
0
30
0
40
0
50
0
60
0
70
0
80
0
90
0
10
00
11
00
12
00
13
00
14
00
15
00

Number of clients

A
v
e
ra

g
e
 r

e
q

u
e
st

s
p

e
r

se
co

n
d System

in overload
state…

…this leads
to the
following
problem:

Results taken from RUBiS running on Emulab

Requests per second vs # clients

0

50

100

150

200

250

10
0
20
0
30
0
40
0
50
0
60
0
70
0
80
0
90
0
10
00
11
00
12
00
13
00
14
00
15
00

Number of clients

A
v
e
ra

g
e
 r

e
q

u
e
st

s
p

e
r

se
co

n
d

Behavior at low
load

Requests per second vs # clients

0

50

100

150

200

250

10
0
20
0
30
0
40
0
50
0
60
0
70
0
80
0
90
0
10
00
11
00
12
00
13
00
14
00
15
00

Number of clients

A
v
e
ra

g
e
 r

e
q

u
e
st

s
p

e
r

se
co

n
d

Behavior at high
load

For users, the
system seems
defective in many
cases

Attempts at apply CT to 3 tier
systems
 Most relevant: ControlWare

 Zhang, Lu, et al. - Univ of Virginia
 Middleware system for mapping QoS goals into CT loops by

controlling allocation of threads to sockets, cache space to
buffers, etc. (opaque requests)

 But, all requests treated as the same -- homogeneous
view

• This punishes “light” requests just as much as complex, CPU-
intensive tasks

IDEA: Use SLT to classify
requests based on their effect
 Analysis: group requests into

 Those that affect the bottleneck
 Those that don’t

 …using the technique of linear regression
 Classify requests based on correlations to DB CPU utilization

(the bottleneck in my system)
 Find candidate list of requests that are correlated with

bottleneck
 (in progress) separate these requests into a

separate, bandwidth-shaped path
 Assumption: reduce avg service time by

delaying “elephant flows”

/dbLookup.php

SLOW
DOWN

Role for iBoxes

SLOW
DOWN

/storeBid.php

/lightRequest.php

/lightRequest.php

No
Network
Visibility

HTTP
Header
Visibility

S
e
r
v
e
r
s

S
e
r
v
e
r
s

Observe: web requests

 From Web server’s Apache logs:

t0 t1
t1 t2
t2 t3
t3 t4
t4 t5

ur
l 1

ur
l 2

ur
l 3

ur
l 4

ur
l 5

Number of
active

requests per
class still

being
processed

10.1.1.2 20296 + 1377 1102213360 0 /PHP/RUBiS_logo.jpg
10.1.1.2 1393 + 1375 1102213360 0 /PHP/SearchItemsByCategory.php
10.1.1.2 3736 + 1390 1102213360 0 /PHP/BrowseCategories.php

Request duration

Observe:
servers
 Utilized sysstat
 Collected for web, db:

 CPU idle, system, user,
busy

 Network traffic between
tiers

 Context switches
 Disk I/O operations

 This work focuses on DB
CPU, which in my
deployment was the
bottleneck

Analyze
 Linear regression

 “Black box approach”
 No modification of O/S or apps
 Minimal interference (capture Apache logs, use the sysstat

system utility)
 No need to tag requests, match requests with effect, or match

observations at the web server with observations at the DB
server

 Additive, linear model
 At high level, load on CPU is the sum of work given to it
 Smaller order effects like CPU scheduling, caching, paging,

disk arm activity, etc., important, but not in my model
 For the model, it is only important that these effects are

not correlated to the class of request

New “Act” Opportunity: iBoxes
 Deep packet inspection

of HTTP headers per
flow
 Nortel 2-7 switch

 Per-flow/per-vlan
bandwidth shaping
 Packeteer PacketShaper

 Currently this work only
classifies requests,
although integration with
the above PNEs is in
progress in our
BladeCenter

.2
2
0

169.229.62/24

.2
2
1

.2
2
2

.2
2
3

.2
2
4

.2
2
5

.2
2
6

.2
2
7

.2
2
8

.2
2
9

.2
3
0

.2
3
1

.2
3
2

.2
3
3

169.229.62.219

Netrads-cm

SP SP SP SP SP SP SP SP SP SP SP SP SP SP

RS-485 (2.5MB/s)

Control

module

Nortel Switch

x14

x4 External ports

x2 mgmt ports (100 Mb/s)

14 addt’l internal ports

169.229.62.218

Summary: Observe/Analyze/Act
Framework
 Observe

 Apache web logs / Systems measurements
 HTTP headers in requests

 Analyze
 Offline (periodic) linear regression
 Output: subset of URLs positively correlated to

bottleneck
 Act (in-progress)

 Use Nortel switch to segregate correlated requests
into their own VLAN

 Use Packeteer box to throttle that VLAN

Experimental setup
 Emulab testbed

 Reconfigurable
interconnect, linux-based
platform, Utah

 RUBiS (Rice Univ.
Bidding System)
 eBay like workload,

transition matrix driven
 Default matrix, 7 sec

 5 clients
 Apache + PHP app
 MySQL DB server

Clients

DB

Apache+PHP

Results of regression
Effect of Requests on Database CPU

(Restricted Model)

0

0.5

1

1.5

2

2.5

100 200 300 400

clients

R
e
g

re
ss

io
n

 C
o

e
ff

ic
ie

n
t

SearchItemsByCategory.php SearchItemsByRegion.php

Only statistically significant coefficients shown

Unexpected Results
 Even the simple RUBiS system has numerous

request types
 I assumed a priori that several of the requests would

be correlated, but weren’t
 Real systems have many, many more request

pathways
 Given a list of 40 URLs, which are correlated to

load?
 Experimentally we found a more narrow set of

candidate URLs than expected

Read-write workload
(transition_7.txt)

/PHP/RUBiS_logo.jpg
 /PHP/SearchItemsByCategory.php
 /PHP/index.html
 /PHP/BrowseCategories.php
 /PHP/browse.html
 /PHP/SearchItemsByRegion.php
 /PHP/BrowseRegions.php
 /PHP/about_me.html
 /PHP/AboutMe.php
 /PHP/bid_now.jpg
 /PHP/RegisterUser.php
 /PHP/register.html

(70,851 requests total)

/PHP/ViewItem.php
 /PHP/sell.html
 /PHP/PutBidAuth.php
 /PHP/PutBid.php
 /PHP/ViewUserInfo.php
 /PHP/BuyNow.php
 /PHP/BuyNowAuth.php
 /PHP/ViewBidHistory.php
 /PHP/PutComment.php
 /PHP/SellItemForm.php
 /PHP/RegisterItem.php
 /PHP/StoreComment.php
 /PHP/StoreBid.php

Review
 SLT was able to classify requests to a web service based on their

effect on the system
 Linear regression techniques:

 Were able to discover statistically significant, positively correlated
relationships between search URLs and load on the DB server

 Avoid the need to modify the system
 Don’t require matching observations at the web server with

observations at the db
 Better QoS by throttling back requests

 Correlations discovered by SLT narrow down the list of URLs to
throttle

 This throttling places the most delay on those users causing the most
load, while not throttling other users

 (work in progress)
 Leads to perceived higher reliability

Questions?
 Thanks to Alice Zheng and Gert Lanckriet
 Thanks to the Emulab group

Backup Slides

Control theory implications
 We have candidate list of requests to pass

through Packeteer PNE for throttling
 Our choice is inherently monotonic

 Throttling requests of any type will reduce load on
the system

 First reduce URLs with pos correlation, then, if
necessary, other URLs

 Several options for throttling choice:
 URL with highest correlation
 Dial for those URLs with pos. correlations
 Implemented with SLB groups on a load balancer

Analyse: The model
 Model:

 Y = ßx + ε
 Y is MxN
 X is NxC

 Result:
 ßHat is then MxC

 OLS:
 Yhat = X*ßHat
 e = Yhat - Y
 RSS = ΣI ei
ν SE = sqrt(RSS)

 Variables
 N: number of time

epochs (output
variable
measurements)

 M: # output variables
 C: # of classes (# urls)

Stepwise regression
 Find covariate with highest correlation to

Y, and add if p-value < 0.05
 Continue adding variables to the model until

all remaining covariates have p-value >=
0.05

 The result is a linear equation containing
only stat. significant terms

Stepwise regression example
Initial columns included: none
Step 1, added column 3, p=0
Step 2, added column 8, p=0
Step 3, added column 12, p=3.52833e-05
Step 4, added column 4, p=0.00339175
Step 5, added column 5, p=0.0122998
Final columns included: 3 4 5 8 12

ans =

 'Coeff' 'Std.Err.' 'Status' 'P'
 [1.2259e+10] [7.9807e+12] 'Out' [0.9988]
 [-0.3189] [0.1721] 'Out' [0.0640]
 [0.3076] [0.0853] 'In' [3.1994e-04]
 [-0.5781] [0.1608] 'In' [3.3473e-04]
 [-0.3890] [0.1552] 'In' [0.0123]
 [0.3193] [0.3989] 'Out' [0.4236]
 [-0.2388] [0.2567] 'Out' [0.3525]
 [1.8627] [0.1295] 'In' [0]
 [-0.3436] [0.3851] 'Out' [0.3723]
 [-0.3088] [0.3018] 'Out' [0.3064]
 [-0.3817] [0.2984] 'Out' [0.2011]
 [0.5235] [0.1893] 'In' [0.0057]
 [-0.8143] [0.4918] 'Out' [0.0980]

Results (con’t)
 Experiments with 100 to 1500 clients

 But at 500 the DB server became the
bottleneck

 Strong positive correlations with
searching urls

References
 [1] R. Zhang, C. Lu, T. Abdelzaher, J. Stankovic. ControlWare: A Middleware

Architecture for Feedback Control of Software Performance. In Proceedings of the
2002 International Conference on Distributed Computing Systems, Vienna, Austria,
July 2002.

 [2] A. Goel, D. Steere, C. Pu, and J. Walpole. Swift: A feedback control and dynamic
reconfiguration toolkit. Technical Report CSE-98-009, Oregon Graduate Institute,
Portland, OR, June 1998.

 [3] E. Cecchet, A. Chanda, S. Elnikety, J. Marguerite and W. Zwaenepoel.
Performance Comparison of Middlware Architectures for Generating Dynamic Web
Content. 4th ACM/IFIP/USENIX International Middleware Conference. Rio de
Janeiro, Brazil, June 16-20, 2003.

 [4] E. Cecchet, J. Marguerite and W. Zwaenepoel. Performance and scalability of
EJB applications. 17th ACM Conference on Object-oriented Programming, Systems,
Languages and Applications (OOpsla 2002), Seattle, WA. Nov 4-8, 2002.

 [5] C. Amza, E. Cecchet, A. Chanda, A. Cox, S. Elnikety, R. Gil, J. Marguerite.
Specification and Implementation of Dynamic Web Site Benchmarks IEEE 5th
Annual Workshop on Workload Characterization (WWC-5). Austin, TX. Nov 2002.

Default_7.txt Workload
Categories

59512 /PHP/RUBiS_logo.jpg
13060 /PHP/SearchItemsByCategory.php
12934 /PHP/index.html
10233 /PHP/BrowseCategories.php
9761 /PHP/browse.html
5469 /PHP/SearchItemsByRegion.php
2857 /PHP/BrowseRegions.php
2102 /PHP/about_me.html
2057 /PHP/AboutMe.php
1209 /PHP/register.html
1207 /PHP/RegisterUser.php
 675 /PHP/sell.html
 3 /PHP/ViewUserInfo.php

Request distribution for 1400
clients

