Distributed Hash Tables (DHT's)

OpenDHT' * Introduced four years ago

. . — Original context: peer-to-peer file sharin,
A Shared, Public DHT Service y prero® s
¢ Idea: put/get as a distributed systems primitive

Sean C. Rhea — Put stores a value in the DHT, get retrieves it
OASIS Retreat — Just like a local hash table, but globally accessible
January 10, 2005 * Since then:

— Good implementations available (Bamboo, Chord)

Joint work with Brighten Godfrey, Brad Karp, — Dozens of proposed applications
Sylvia Ratnasamy, Scott Shenker, Ion Stoica and Harlan Yu

DHT Applications DHT Applications

» Storage systems » Storage systems
— file systems: OceanStore (UCB), Past (Rice, MSR), CFS(MIT)
— enterprise backup: hivecache.com
— content distribution networks: BSlash(Stanford), Coral (NYU)
— cooperative archival: Venti-DHASH (MIT), Pastiche (UMich)

— web caching: Squirrel (MSR)
— Usenet DHT (MIT) — Semantic Free Referencing (ICSI, MIT)

— Layered Flat Names (ICSI, Intel, MIT, UCB)

* Indexing/naming services
— Chord-DNS (MIT)
— OpenDHT (Intel, UCB)
— pSearch (HP)

DHT Applications DHT Applications
* Storage systems * Storage systems
* Indexing/naming services * Indexing/naming services
* DB query processing * DB query processing
— PIER (UCB, Intel) * Internet data structures

— Catalogs (Wisconsin) _ SkipGraphs (Yale)

— PHT (Intel, UCSD, UCB)
— Cone (UCSD)

DHT Applications

* Storage systems

* Indexing/naming services
* DB query processing
* Internet data structures

¢ Communication services
— i3 (UCB, ICSI)

— multicast/streaming: SplitStream, MCAN, Bayeux, Scribe, ...

Deployed DHT Applications

e Overnet
— Peer-to-peer file sharing
— 10,000s of users

* Coral
— Cooperative web caching

— Several million requests per day

Why the discrepancy between hype and reality?

A Simple DHT Application:
FreeDB Cache

* FreeDB is a free version of the CD database
— Each disc has a (mostly) unique fingerprint
— Map fingerprints to metadata about discs
* Very little data: only 2 GB or so
— Trick is making it highly available on the cheap
— Existing server: 4M reqs/week, 48 hour outage
* A perfect DHT application
— One node can read DB, put each entry into DHT
— Other nodes check DHT first, fall back on DB

Deploying the FreeDB Cache

Download and familiarize self with DHT code
Get a login on a bunch (=100) of machines

— Maybe convince a bunch of friends to do it

— Or, embed code in CD player application

— PlanetLab, if you’re really lucky

Create monitoring code to keep up and running
— Provide a service for clients to find DHT nodes
Build proxy to query DHT before DB

After all this, is performance even any better?

— Is it any wonder that no one is deploying DHT apps?

An Alternative Deployment Picture

What if a DHT was already deployed?

— How hard is it to latch onto someone else’s DHT?
Still have build proxy to query DHT before DB
After that, go direct to measuring performance

— Don’t have to get login on a bunch of machines

— Don’t have to build infrastructure to keep it running

Much less effort to give it a try

OpenDHT

e Insight: a shared DHT would be really valuable
— Could build/deploy FreeDB cache in a day
— Dumping DB into DHT: = 100 semicolons of C++
— Proxy: 58 lines of Perl

* But it presents a bunch of research challenges
— Traditional DHT APIs aren’t designed to be shared

* Every application’s code must be present on every DHT node
* Many traditional DHT apps modify the DHT code itself

— A shared DHT must isolate applications from each other
* Clients should be able to authenticate values stored in DHT
* Resource allocation between clients/applications

Protecting Against Overuse

PlanetLab has a 5 GB per-slice disk quota
— “But any real deployment will be over-provisioned.”

Peak load may be much higher than average load
— A common problem for web servers, for example

* Malicious users may deny service through overuse
— In general, can’t distinguish from enthusiastic users

Research goals:
— Fairness: stop the elephants from trampling the mice
— Utilization: don’t force the elephants to become mice

Put/Get Interface Assumptions

* Make client code and garbage collection easy
— Puts have a time-to-live (TTL) field
— DHT either accepts or rejects puts “immediately”
— If accepted, must respect TTL; else, client retries
* Accept based on fairness and utilization
— Fairness could be weighted for economic reasons
 All decisions local to node
— No global fairness/utilization yet
— Rewards apps that balance puts, helps load balance

Fair Allocation Example

SAdisk capacity 4 disk capacity 4 disk capacity

3 client 1 S N

=) 2

E 5 3

3 S clients 1 & 2 5 |clients 1 & 2

< S

client 3 client 3 S client 3

time time time

Starvation

* A motivating example
— Assume we accept 5 GB of puts in very little time
— Assume all puts have maximum TTL
* Result: starvation
— Must hold all puts for max TTL, and disk full
— Can’t accept new puts until existing ones expire
* Clearly, this hurts fairness
— Can’t give space to new clients, for one thing

Preventing Starvation

* Fairness: must be able to adapt to changing needs
— Guarantee storage frees up as some minimum rate, r,,;, = C/T
— Tis maximum TTL, C is disk capacity

 Utilization: don’t rate limit when storage plentiful

<+ Sum

W\ Slope = rmin

now time T

o storage QO

Efficiently Preventing Starvation

* Goal: before accept put, guarantee sum < C
* Naive implementation
— Track values of sum in array indexed by time
— O(T/A £) cost: must update sum for all time under put
¢ Better implementation
— Track inflection points of sum with a tree
— Each leaf is an inflection point (time, value of sum)
— Interior nodes track max value of all children

— O(log n) cost: where n is the number of puts accepted

Fairly Allocating Put Rate

* Another motivating example
— For each put, compute sum, if < C, accept
— Not fair: putting more often gives more storage

* Need to define fairness
— Critical question: fairness of what resource?
— Choice: storage over time, measured in bytes x seconds
— 1 byte put for 100 secs same as 100 byte put for 1 sec
— Also call these “commitments”

Candidate Algorithm

* Queue all puts for some small time, called a slot

— If max put size is m, a slot is m/r

min

seconds long
e At end of slot, in order of least total commitments:
— If sum < C for a put, accept it

— Otherwise, reject it

B Client |
g 30 Client 2
e Result: E Client 3
: g % Client 4 P
. = - -
— Starvation E o —
Eosp /
g /
E 10| /
o |/
= bl
E /
£ 0

o 1 2 3 4 5 6 7 8 9 10
Time (hours)

Preventing Starvation (Part II)

* Problem: we only prevented global starvation
— Individual clients can still be starved periodically
* Solution: introduce use-it-or-lose-it principle
— Don’t allow any client to fall too far behind
* Easy to implement
— Introduce a minimum total commitment, s,
— After every accept, increment client commitment,
Sesiens» and s, both
— When ordering puts, compute
effective s

client =max(sclient’ Ssys)

Revised Algorithm Performance

50

Q 45 | Client 1
= 40 [Client2
252 35 | Cliemt3
S92 30 [Clientd —~
26% 25 e
Edm 20 /
5 &8s / .
O = 15 /
S wl / —
7] 5t/
0%
01 23 456 78910
Time (hours)
9
= 8 N Client 1
g 5 RN Client 2
< 6 / AN Client 3
- / N\ Client4
5 4 / T
Z I /
E 2/ /\—_
o - /
= 1y
0
0O 1 2 3 4 5 6 7 8 9 10
Time (hours)

Fair Storage Allocation Notes

* Also works with TTL/size diversity
— Not covered here

* Open Problem 1: can we remove the queuing?
— Introduces a delay of 1/2 slot on average
— Working on this now, but no firm results yet

* Open Problem 2: how to write clients?
— How long should a client wait to retry rejected put?
— Can it redirect the put to a new address instead?
— Do we need an explicit refresh operation?

Longer Term Future Work

* OpenDHT makes a great common substrate for:
— Soft-state storage
— Naming and rendezvous

e Many P2P applications also need to:
— Solve the bootstrap problem
— Traverse NATSs
— Redirect packets within the infrastructure (as in i3)
— Refresh puts while intermittently connected

* We need systems software for P2P

A System Architecture for P2P

P2P Applications

2 v | ®
<] w Z ~ g &
z S»> | o = | 5
S| &3 |2 88
k] e3 | = | 3 =
=% = 133 <)
= = - =3 =1
] < =
v g8 3 v | @
S EL | & |22
<. <= | < E é
(@]
o ® o
‘ OpenDHT

‘ PlanetLab / Other Infrastructure

Internet

For more information, see
http://opendht.org/

