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Distributed Hash Tables (DHTs)

• Introduced four years ago

– Original context: peer-to-peer file sharing

• Idea: put/get as a distributed systems primitive

– Put stores a value in the DHT, get retrieves it

– Just like a local hash table, but globally accessible

• Since then:

– Good implementations available (Bamboo, Chord)

– Dozens of proposed applications

DHT Applications

• Storage systems

– file systems: OceanStore (UCB), Past (Rice, MSR), CFS(MIT)

– enterprise backup: hivecache.com

– content distribution networks: BSlash(Stanford), Coral (NYU)

– cooperative archival: Venti-DHASH (MIT), Pastiche (UMich)

– web caching: Squirrel (MSR)

– Usenet DHT (MIT)

DHT Applications

• Storage systems

• Indexing/naming services

– Chord-DNS (MIT)

– OpenDHT (Intel, UCB)

– pSearch (HP)

– Semantic Free Referencing (ICSI, MIT)

– Layered Flat Names (ICSI, Intel, MIT, UCB)

DHT Applications

• Storage systems

• Indexing/naming services

• DB query processing

– PIER (UCB, Intel)

– Catalogs (Wisconsin)

DHT Applications

• Storage systems

• Indexing/naming services

• DB query processing

• Internet data structures

– SkipGraphs (Yale)

– PHT (Intel, UCSD, UCB)

– Cone (UCSD)



DHT Applications

• Storage systems

• Indexing/naming services

• DB query processing

• Internet data structures

• Communication services

– i3 (UCB, ICSI)

– multicast/streaming: SplitStream, MCAN, Bayeux, Scribe, …

Deployed DHT Applications

• Overnet

– Peer-to-peer file sharing

– 10,000s of users

• Coral

– Cooperative web caching

– Several million requests per day

Why the discrepancy between hype and reality?

A Simple DHT Application:

FreeDB Cache

• FreeDB is a free version of the CD database

– Each disc has a (mostly) unique fingerprint

– Map fingerprints to metadata about discs

• Very little data: only 2 GB or so

– Trick is making it highly available on the cheap

– Existing server: 4M reqs/week, 48 hour outage

• A perfect DHT application

– One node can read DB, put each entry into DHT

– Other nodes check DHT first, fall back on DB

Deploying the FreeDB Cache

• Download and familiarize self with DHT code

• Get a login on a bunch (!100) of machines

– Maybe convince a bunch of friends to do it

– Or, embed code in CD player application

– PlanetLab, if you’re really lucky

• Create monitoring code to keep up and running

– Provide a service for clients to find DHT nodes

• Build proxy to query DHT before DB

• After all this, is performance even any better?

– Is it any wonder that no one is deploying DHT apps?

An Alternative Deployment Picture

• What if a DHT was already deployed?

– How hard is it to latch onto someone else’s DHT?

• Still have build proxy to query DHT before DB

• After that, go direct to measuring performance

– Don’t have to get login on a bunch of machines

– Don’t have to build infrastructure to keep it running

• Much less effort to give it a try

OpenDHT

• Insight: a shared DHT would be really valuable

– Could build/deploy FreeDB cache in a day

– Dumping DB into DHT: ! 100 semicolons of C++

– Proxy: 58 lines of Perl

• But it presents a bunch of research challenges

– Traditional DHT APIs aren’t designed to be shared

• Every application’s code must be present on every DHT node

• Many traditional DHT apps modify the DHT code itself

– A shared DHT must isolate applications from each other

• Clients should be able to authenticate values stored in DHT

• Resource allocation between clients/applications



Protecting Against Overuse

• PlanetLab has a 5 GB per-slice disk quota

– “But any real deployment will be over-provisioned.”

• Peak load may be much  higher than average load

– A common problem for web servers, for example

• Malicious users may deny service through overuse

– In general, can’t distinguish from enthusiastic users

• Research goals:

– Fairness: stop the elephants from trampling the mice

– Utilization: don’t force the elephants to become mice

Put/Get Interface Assumptions

• Make client code and garbage collection easy

– Puts have a time-to-live (TTL) field

– DHT either accepts or rejects puts “immediately”

– If accepted, must respect TTL; else, client retries

• Accept based on fairness and utilization

– Fairness could be weighted for economic reasons

• All decisions local to node

– No global fairness/utilization yet

– Rewards apps that balance puts, helps load balance

Fair Allocation Example
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Starvation

• A motivating example

– Assume we accept 5 GB of puts in very little time

– Assume all puts have maximum TTL

• Result: starvation

– Must hold all puts for max TTL, and disk full

– Can’t accept new puts until existing ones expire

• Clearly, this hurts fairness

– Can’t give space to new clients, for one thing

Preventing Starvation

• Fairness: must be able to adapt to changing needs

– Guarantee storage frees up as some minimum rate, rmin = C/T

– T is maximum TTL, C is disk capacity

• Utilization: don’t rate limit when storage plentiful
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Efficiently Preventing Starvation

• Goal: before accept put, guarantee sum ! C

• Naïve implementation

– Track values of sum in array indexed by time

– O(T/" t) cost: must update sum for all time under put

• Better implementation

– Track inflection points of sum with a tree

– Each leaf is an inflection point (time, value of sum)

– Interior nodes track max value of all children

– O(log n) cost: where n is the number of puts accepted



Fairly Allocating Put Rate

• Another motivating example

– For each put, compute sum, if ! C, accept

– Not fair: putting more often gives more storage

• Need to define fairness

– Critical question: fairness of what resource?

– Choice: storage over time, measured in bytes " seconds

– 1 byte put for 100 secs same as 100 byte put for 1 sec

– Also call these “commitments”

Candidate Algorithm
• Queue all puts for some small time, called a slot

– If max put size is m, a slot is m/rmin seconds long

• At end of slot, in order of least total commitments:

– If sum ! C for a put, accept it

– Otherwise, reject it

• Result:

– Starvation

Preventing Starvation (Part II)

• Problem: we only prevented global starvation

– Individual clients can still be starved periodically

• Solution: introduce use-it-or-lose-it principle

– Don’t allow any client to fall too far behind

• Easy to implement

– Introduce a minimum total commitment, ssys

– After every accept, increment client commitment,
sclient, and ssys both

– When ordering puts, compute

effective sclient =max(sclient, ssys)

Revised Algorithm Performance

Fair Storage Allocation Notes

• Also works with TTL/size diversity

– Not covered here

• Open Problem 1: can we remove the queuing?

– Introduces a delay of 1/2 slot on average

– Working on this now, but no firm results yet

• Open Problem 2: how to write clients?

– How long should a client wait to retry rejected put?

– Can it redirect the put to a new address instead?

– Do we need an explicit refresh operation?

Longer Term Future Work

• OpenDHT makes a great common substrate for:

– Soft-state storage

– Naming and rendezvous

• Many P2P applications also need to:

– Solve the bootstrap problem

– Traverse NATs

– Redirect packets within the infrastructure (as in i3)

– Refresh puts while intermittently connected

• We need systems software for P2P



A System Architecture for P2P

PlanetLab / Other Infrastructure

OpenDHT
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P2P Applications

For more information, see

http://opendht.org/


